The objective of the present investigation was to understand the efficacy of chlorophyll fluorescence analysis and to identify the specific photosynthetic parameters for early and rapid detection of Cu-induced HM-stress in plants. Aquatic angiosperm Lemna minor was exposed to various concentrations (0-40 µM) of Cu. We observed that the F/F (Efficiency of the water-splitting complex on the donor side of PSII), quantum yield for electron transport, and quantum yield of primary photochemistry were decreased however, dissipated quantum yield was increased with Cu concentration. ABS/CS, TR/CS, ET/CS and maximum quantum yield were displayed the dose-response relationship under Cu stress. Performance indexes were increased initially due to the beneficial effects of Cu at lower concentration while decreased significantly (p ≤ 0.05) at highest concentration of Cu. The outcomes of the present research revealed that the ChlF analysis is very sensitive tool that can be used to determine the toxicity of heavy metals in plants.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9226353 | PMC |
http://dx.doi.org/10.1038/s41598-022-14985-2 | DOI Listing |
J Plant Physiol
January 2025
Department of Ecology, Faculty of Sciences, University of Málaga, Málaga, Spain.
Cold-temperate and Arctic hard bottom coastal ecosystems are dominated by kelp forests, which have a high biomass production and provide important ecosystem services, but are subject to change due to ocean warming. However, the photophysiological response to increasing temperature of ecologically relevant species, such as Laminaria digitata, might depend on the local thermal environment where the population has developed. Therefore, the effects of temperature on growth rate, biochemical composition, maximum quantum yield, photosynthetic quotient and carbon budget of young cultured sporophytes of Laminaria digitata from the Arctic at Spitsbergen (SPT; cultured at 4, 10 and 16 °C) and from the cold-temperate North Sea island of Helgoland (HLG; cultured at 10, 16 and 22 °C) were comparatively analyzed.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Materials Science and Engineering and the Russell Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, Haifa 3200003, Israel.
Lead-halide hybrid perovskites (RNHPbX, X = halide, e.g., Cl, Br, I; R = organic moiety) show promise for next-generation optoelectronic devices due to their simple synthesis routes, strong light absorption, and high photoluminescence quantum yield.
View Article and Find Full Text PDFDalton Trans
January 2025
College of Materials and New Energy, Chongqing University of Science and Technology, Chongqing, 401331, China.
Achieving multicolor emission is a fascinating goal that remains challenging for zero-dimensional (0D) hybrid halides. We successfully obtained a three-millimeter-scale 0D (MXDA)CdBr (MXDA = CHN) single crystal (SC) by the solvothermal method. It serves as an outstanding host for doping with various valence activators, such as Cu, Mn and Sb, and these doped single crystals emit blue (470 nm), yellow (580 nm) and red (618 nm) fluorescence, which accurately cover a large visible region and achieve efficient multicolor emission.
View Article and Find Full Text PDFDalton Trans
January 2025
P.N. Lebedev Physical Institute of the Russian Academy of Sciences, Leninsky Prospekt 53, 119991 Moscow, Russian Federation.
We synthesized and investigated a new series of Sm 1,3-diketonate complexes with CF-homologous thiophene-containing ligands. A clear correlation was found between the number of fluorine atoms in the 1,3-diketone's carbon chain and the luminescent properties of the samarium(III) complexes. The ligand modification method employed facilitates targeted and significant enhancements in the photoluminescence quantum yield (PLQY).
View Article and Find Full Text PDFNanoscale
January 2025
Hunan Automotive Engineering Vocational University, Zhuzhou 412001, P. R. China.
The incorporation of Sb ions into all-inorganic halide lead-free perovskites bestows them with remarkable photoluminescence characteristics, including an extensive color tuning range, elevated photoluminescence quantum yield (PLQY), and reversible color transitions, which hold significant promise for applications in light-emitting diodes, anti-counterfeiting encryption technologies, and photodetectors. Sb ions not only create new optical absorption channels but also can be integrated into these materials as activators or sensitizers to modulate the bandgap and band structure. This review focuses on the optical properties of Sb ion-doped lead-free halide perovskites while examining potential energy transfer pathways across various doping systems.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!