Metal oxides possessing distinctive physical/chemical properties due to different crystal structures and stoichiometries play a pivotal role in numerous current technologies, especially heterogeneous catalysis for production/conversion of high-valued chemicals and energy. To date, many researchers have investigated the effect of the structure and composition of these materials on their reactivity to various chemical and electrochemical reactions. However, metal oxide surfaces evolve from their initial form under dynamic reaction conditions due to the autonomous behaviors of the constituent atoms to adapt to the surrounding environment. Such nanoscale surface phenomena complicate reaction mechanisms and material properties, interrupting the clarification of the origin of functionality variations in reaction environments. In this review, the current findings on the spontaneous surface reorganization of metal oxides during reactions are categorized into three types: 1) the appearance of nano-sized second phase from oxides, 2) the (partial) encapsulation of oxide atoms toward supported metal surfaces, and 3) the oxide surface reconstruction with selective cation leaching in aqueous solution. Then their effects on each reaction are summarized in terms of activity and stability, providing novel insight for those who design metal-oxide-based catalytic materials.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/adma.202203370 | DOI Listing |
Plant Cell Rep
January 2025
School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China.
An endoplasmic reticulum-localized Cu transporter, PhHMA5II1, interacts with copper chaperones and plays an important role in Cu detoxification in petunia. Copper (Cu) is an essential element for plant growth but toxic when present in excess. In this study we present the functional characterization of a petunia (Petunia hybrida) P-type heavy-metal ATPases (HMAs), PhHMA5II1.
View Article and Find Full Text PDFAnal Chim Acta
February 2025
School of Physics and Electronic Information Engineering, Henan Polytechnic University, Jiaozuo, 454003, China. Electronic address:
Background: Trimethylamine (TMA) is a colorless, volatile gas with a strong irritating odor. Prolonged exposure to a certain amount of TMA can cause symptoms such as dizziness, nausea and difficulty breathing, and may even be life-threatening. Therefore, effective detection of TMA is crucial.
View Article and Find Full Text PDFAnal Chim Acta
February 2025
School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, PR China; Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China. Electronic address:
Background: The excessive application of enrofloxacin (ENR) results in residues contaminating both food and the environment. Consequently, developing robust analytical methods for the selective detection of ENR is crucial. The photoelectrochemical (PEC) sensor has emerged as a highly sensitive analytical technique that has seen rapid development in recent years.
View Article and Find Full Text PDFEnviron Res
January 2025
Department of Chemistry, University college in Al-Jamoum, Umm Al-Qura University, 21955, Makkah, Saudi Arabia.
Accurate quantification of neonicotinoid insecticides is pivotal to ensure environmental safety by examining and mitigating their potential harmful effects on pollinators and aquatic ecosystems. In this scenario, detection of neonicotinoid insecticide, thiamethoxam (TMX), is significant for safeguarding ecological balance and human health. Hence, we developed a highly sensitive electrochemical sensor for detection of TMX in environmental samples, utilizing a novel nanocomposite with superior electrocatalytic properties and integrating an optimized neural network for accurate data analysis.
View Article and Find Full Text PDFTalanta
December 2024
Department of Chemical Engineering, National Taiwan University of Science and Technology, Taiwan. Electronic address:
Bioactive materials and biosensing technologies are emerging as pivotal tools in the early detection and management of oral cancer, a disease characterized by high morbidity and mortality rates. Recent advancements in nanotechnology have facilitated the development of innovative biosensors that utilize bioactive materials for non-invasive diagnostics, particularly through salivary analysis. These biosensors, including electrochemical, optical, and molecular types, target specific biomarkers such as DNA, RNA, and proteins associated with oral cancer.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!