Lead (Pb) is ubiquitous in environment that accumulates in teeth and calcified tissues from where it releases gradually with aging and adversely affects dental health. This study aimed to determine the effect of Pb exposure on odontogenic differentiation potential of isolated human dental pulp stem cells and investigate the possible underlying epigenetic factors. In the absence of Pb exposure, stem cells displayed significant odontogenic markers including elevated Alkaline Phosphatase (ALP) activity, Alizarin red staining intensity, and increased expression of odontogenic DMP1 and DSPP genes. Exposure to 60 μM Pb resulted in reduced ALP activity and calcium deposition. Also, diminished expression of RUNX2, DMP1, and DSPP, as well as Wnt signaling mediators including WNT1, and β-catenin were detected. The expression of Wnt signaling related microRNAs, miRNA-139-5p and miRNA-142-3p, on the other hand, were shown to have a significant increase. We concluded that Pb could adversely affect the odontogenic differentiation potential of dental pulp stem cell. The underlying mechanism might related to Pb-induced epigenetic dysregulation of WNT1/β-catenin pathway-related miRNAs leading to down-regulation of Wnt/β-catenin related odontogenic genes and eventually impaired odontogenic differentiation process.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.tiv.2022.105422 | DOI Listing |
J Dent Res
January 2025
State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China.
Odontogenic keratocyst (OKC) and ameloblastoma (AM) are common jaw lesions with high bone-destructive potential and recurrence rates. Recent advancements in technology led to significant progress in understanding these conditions. Single-cell and spatial omics have improved insights into the tumor microenvironment and cellular heterogeneity in OKC and AM.
View Article and Find Full Text PDFJ Dent Sci
January 2025
Endodontic Department, Changzhou Stomatological Hospital, Changzhou, China.
Background/purpose: Heat stress is essential for improving the efficacy of mesenchymal stem cell (MSC)-based regeneration medicine. However, it is still unclear whether and how heat stress influences the differentiation of stem cells from apical papilla (SCAPs). This research aimed to explore the potential mechanism of glucose-regulated protein 78 (GRP78) in regulating differentiation under heat stress in SCAPs.
View Article and Find Full Text PDFJ Dent Sci
January 2025
School of Dentistry, College of Medicine, National Taiwan University, Taipei, Taiwan.
Background/purpose: Revascularization procedures are used over apexification to treat teeth with necrotic pulp tissues and incomplete root formation. Clinically, inducing proliferation, migration, matrix deposition, and differentiation of stem cells from apical papilla (SCAPs) are critical for pulp regeneration. The study aimed to elucidate the impact of bone morphogenetic protein-4 (BMP-4) on plasminogen activation molecules and the osteogenic/odontogenic differentiation of SCAPs, as well as understand the related signaling mechanisms.
View Article and Find Full Text PDFJ Dent Sci
January 2025
Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, Fukuoka City, Fukuoka, Japan.
Background/purpose: Radiolucent lesions of the mandible, including ameloblastoma, odontogenic keratocyst (OKC), dentigerous cyst (DC) and simple bone cyst (SBC), are frequently encountered in clinical practice. However, they vary in type and occasionally in appearance. Each lesion needs a different treatment and approach; therefore, accurate diagnosis is crucial before treatment.
View Article and Find Full Text PDFBMJ Case Rep
January 2025
Department of Oral and Maxillofacial Surgery, Indira Gandhi Institute of Dental Sciences, Sri Balaji Vidyapeeth (Deemed to be University), Pondicherry, India.
A calcifying epithelial odontogenic tumour (CEOT) is a rare benign odontogenic tumour of epithelial origin accounting for approximately 1% of all odontogenic tumours. The intraosseous form occurs more commonly in the posterior mandible whereas the extraosseous form is common in the anterior maxilla. CEOT is often asymptomatic and presents with a painless swelling of the mandible.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!