Introduction: Cotton is a vital industrial crop that is gradually shifting to planting in arid areas. However, tubby-like proteins (TULPs) involved in plant response to various stresses are rarely reported in cotton. The present study exhibited that GhTULP30 transcription in cotton was induced by drought stress.
Objective: The present study demonstrated the improvement of plant tolerance to drought stress by GhTULP30 through regulation of stomatal movement.
Methods: GhTULP30 response to drought and salt stress was preliminarily confirmed by qRT-PCR and yeast stress experiments. Ectopic expression in Arabidopsis and endogenous gene silencing in cotton were used to determine stomatal movement. Yeast two-hybrid and spilt-luciferase were used to screen the interacting proteins.
Results: Ectopic expression of GhTULP30 in yeast markedly improved yeast cell tolerance to salt and drought. Overexpression of GhTULP30 made Arabidopsis seeds more resistant to drought and salt stress during seed germination and increased the stomata closing speed of the plant under drought stress conditions. Silencing of GhTULP30 in cotton by virus-induced gene silencing (VIGS) technology slowed down the closure speed of stomata under drought stress and decreased the length and width of the stomata. The trypan blue and diaminobenzidine staining exhibited the severity of leaf cell necrosis of GhTULP30-silenced plants. Additionally, the contents of proline, malondialdehyde, and catalase of GhTULP30-silenced plants exhibited significant variations, with obvious leaf wilting. Protein interaction experiments exhibited the interaction of GhTULP30 with GhSKP1B and GhXERICO.
Conclusion: GhTULP30 participates in plant response to drought stress. The present study provides a reference and direction for further exploration of TULP functions in cotton plants.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9788940 | PMC |
http://dx.doi.org/10.1016/j.jare.2022.06.007 | DOI Listing |
Bot Stud
January 2025
Crop Science Division, Taiwan Agricultural Research Institute, Ministry of Agriculture, Taichung, 413, Taiwan.
Background: Rice is a staple food for the global population. However, extreme weather events threaten the stability of the water supply for agriculture, posing a critical challenge to the stability of the food supply. The use of technology to assess the water status of rice plants enables the precise management of agricultural water resources.
View Article and Find Full Text PDFBMC Genomics
January 2025
Henan Collaborative Innovation Center of Modern Biological Breeding, College of Agronomy, Henan Institute of Science and Technology, Xinxiang, 453003, China.
Background: The Sec14 domain is an ancient lipid-binding domain that evolved from yeast Sec14p and performs complex lipid-mediated regulatory functions in subcellular organelles and intracellular traffic. The Sec14 family is characterized by a highly conserved Sec14 domain, and is ubiquitously expressed in all eukaryotic cells and has diverse functions. However, the number and characteristics of Sec14 homologous genes in soybean, as well as their potential roles, remain understudied.
View Article and Find Full Text PDFPlants (Basel)
January 2025
The New Zealand Institute for Plant & Food Research Limited, 120 Mt Albert Road, Auckland 1025, New Zealand.
Calcium-dependent protein kinases (CPKs) are plant proteins that directly bind calcium ions before phosphorylating substrates involved in biotic and abiotic stress responses, as well as development. CPK3 () is involved with plant signaling pathways such as stomatal movement regulation, salt stress response, apoptosis, seed germination and pathogen defense. In this study, and its orthologues in relatively distant plant species such as rice (, monocot) and kiwifruit (, asterid eudicot) were analyzed in response to drought, bacteria, fungi, and virus infections.
View Article and Find Full Text PDFPlants (Basel)
January 2025
Department of Agricultural, Food and Environmental Sciences, Università Politecnica delle Marche (UNIVPM), Via Brecce Bianche 10, 60131 Ancona, Italy.
Water scarcity is an ecological issue affecting over 10% of Europe. It is intensified by rising temperatures, leading to greater evaporation and reduced precipitation. Agriculture has been confirmed as the sector accounting for the highest water consumption globally, and it faces significant challenges relating to drought, impacting crop yields and food security.
View Article and Find Full Text PDFPlants (Basel)
January 2025
Department Biosciences and Territory, University of Molise, 86090 Pesche, Italy.
In the Mediterranean basin, urban forests are widely recognized as essential landscape components, playing a key role in nature-based solutions by enhancing environmental quality and providing a range of ecosystem services. The selection of woody plant species for afforestation and reforestation should prioritize native species that align with the biogeographical and ecological characteristics of the planting sites. Among these, L.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!