Maternal exposure to atmospheric PM and fetal brain development: Associations with BAI1 methylation and thyroid hormones.

Environ Pollut

Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, Guangdong, China. Electronic address:

Published: September 2022

Maternal exposure to atmospheric fine particulate matter (PM) during pregnancy is associated with adverse fetal development, including abnormal brain development. However, the underlying mechanisms and influencing factors remain uncertain. This study investigated the roles of DNA methylation in genes involving neurodevelopment and thyroid hormones (THs) in fetal brain development after maternal exposure to PM from e-waste. Among 939 healthy pregnant women recruited from June 2011 to September 2012, 101 e-waste-exposed and 103 reference mother-infant pairs (204 pairs totally) were included. Annual ground-level PM concentrations over e-waste-exposed area (116.38°E, 23.29°N) and reference area (116.67°E, 23.34°N) in 2011, 2012 were obtained by estimates and maternal exposure was evaluated by calculating individual chronic daily intakes (CDIs) of PM. Methylation and THs including thyroid-stimulating hormone (TSH), free triiodothyronine (FT3) and free thyroxine (FT4) level were measured in umbilical cord blood collected shortly after delivery. We found higher ground-level PM concentrations led to greater individual CDI of PM in e-waste-exposed pregnant women. After adjustment for gender and birth BMI, significant mediation effects on the adverse associations of maternal PM exposure with birth head circumference were observed for methylations at positions +13 and + 32 (respectively mediated proportion of 9.8% and 5.3%, P < 0.05 and P < 0.01) in the brain-specific angiogenesis inhibitor 1 (BAI1) gene, but not for methylations in the catenin cadherin-associated protein, alpha 2 (CTNNA2) gene. BAI1 (position +13) methylation was also significantly correlated with FT3 levels (r = -0.156, P = 0.032), although maternal CDI of PM was positively associated with higher odds of abnormal TSH levels (OR = 5.03, 95% CI: 1.00, 25.20, P = 0.05) rather than FT3 levels. Our findings suggest that methylation (likely linked to THs) in neonates may play mediation roles associated with abnormal brain development risk due to maternal exposure to atmospheric PM from e-waste.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envpol.2022.119665DOI Listing

Publication Analysis

Top Keywords

maternal exposure
20
brain development
12
exposure atmospheric
8
fetal brain
8
thyroid hormones
8
pregnant women
8
ground-level concentrations
8
maternal
5
atmospheric fetal
4
development
4

Similar Publications

Introduction: Chronic fetal hypoxia is commonly associated with fetal growth restriction and can predispose to respiratory disease at birth and in later life. Antenatal antioxidant treatment has been investigated to overcome the effects of oxidative stress to improve respiratory outcomes. We aimed to determine if the effects of chronic fetal hypoxia and antenatal antioxidant administration persist in the lung in early adulthood.

View Article and Find Full Text PDF

Per- and Polyfluoroalkyl Substances and Twin Growth Discordance: New Insights from a Twin Birth Cohort Study.

Environ Sci Technol

January 2025

Guangdong Key Laboratory of Environmental Pollution and Health, College of Environment and Climate, Jinan University, Guangzhou 510632, China.

Prenatal exposure to per- and polyfluoroalkyl substances (PFASs) has been linked to adverse fetal growth and development. However, most evidence was generated based on the singleton pregnancy studies, whereas potential impact on twin fetuses remains largely unknown. This study aimed to explore the associations of prenatal PFAS exposure with the growth and developmental differences within twin pairs by investigating 162 twin newborns and their mothers and determining 19 PFASs in maternal serum during the first, second, and third trimesters and cord serum of twins.

View Article and Find Full Text PDF

To explore the intergenerational cardiotoxicity of nanoplastics, maternal mice were exposed to 60 nm polystyrene nanoplastics (PS-NP) during pregnancy and lactation. The results showed that PS-NP can enter the hearts of offspring and induce myocardial fiber arrangement disorder, acidophilic degeneration of cardiomyocytes, and elevated creatine kinase isoenzymes (CK-MB) and lactate dehydrogenase (LDH) levels after maternal exposure to PS-NP at 100 mg/kg during pregnancy and lactation. Mechanistically, KEGG analysis of RNA sequencing showed the participation of hypoxia-inducible factor-1 (HIF-1) and ferroptosis in PS-NP-induced cardiotoxicity.

View Article and Find Full Text PDF

Variable stressor exposure shapes fitness within and across generations.

Sci Rep

January 2025

Aquatic Ecology, Department of Biology, Lund University, Lund, Sweden.

Environmental variation has long been considered a key driver of evolutionary change, predicted to shape different strategies, such as genetic specialization, plasticity, or bet-hedging to maintain fitness. However, little evidence is available with regards to how the periodicity of stressors may impact fitness across generations. To address this gap, I conducted a reciprocal split-brood experiment using the freshwater crustacean, Daphnia magna, and an ecologically relevant environmental stressor, ultraviolet radiation (UVR).

View Article and Find Full Text PDF

Myelomeningocele (MMC) is a congenital defect of the spine characterized by meningeal and spinal cord protrusion through open vertebral archs, and its exposure to the amniotic fluid. Given that the progression of neuronal loss begins early in fetal life, an early coverage of the defect is required to improve the neurological outcomes. Several studies have proposed patches as an alternative to full surgical repair, to achieve an early protection of the spine and possibly reduce the rate of complications of current prenatal surgical procedures.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!