Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Bisphenol A diglycidyl ethers (BADGE) is one class of human-made chemicals, and it is one of the most widely used raw materials for epoxy resins. As an active compound, BADGE undergoes biotransformation in vitro and in vivo. However, there is a limited understanding of the biotransformation of BADGE and toxicity studies on transformation products. We conducted comprehensive research on the metabolic transformation of BADGE in vitro and in vivo. The results showed that 12 metabolites and 7 metabolites were identified in vitro and in vivo, respectively. Four biotransformation products, including M1 (hydrolysis), M3 (dehydroxylation), M10 (carboxylation), and M11 (glucose conjugation), can be found in both in vitro and in vivo samples. The main metabolic pathways were hydroxylation, carboxylation, cysteine (Cys) conjugation, and glucose conjugation. Besides, our results suggested the existence of metabolic differences in BADGE between species and gender. Further, we investigated toxicities of BADGE metabolites in-silico. Importantly, some hydrolysis (M1, M2), hydroxylation (M7), and oxidation (M8) products showed similar or even higher potential toxicity than BADGE depending on the endpoint. These results enrich the biotransformation profiles of BADGE and provide useful information for understanding its biotransformation in humans and a reference for the comprehensive assessment for human health risk.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.fct.2022.113252 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!