A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Metabolic profiling of bisphenol A diglycidyl ether in vitro and in vivo. | LitMetric

Metabolic profiling of bisphenol A diglycidyl ether in vitro and in vivo.

Food Chem Toxicol

School of Food and Biological Engineering, Xihua University, Chengdu, 610039, China; College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China; Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention &Control, Beijing, 100013, China. Electronic address:

Published: August 2022

AI Article Synopsis

  • BADGE is a common chemical used in epoxy resins that undergoes biotransformation in both laboratory and living organisms, leading to the formation of 12 metabolites in vitro and 7 in vivo.
  • Four main metabolites, including hydrolyzed and conjugated products, were identified in both settings.
  • The study also found that certain metabolites can be as toxic or even more toxic than BADGE itself, highlighting the need for further research on its health risks.

Article Abstract

Bisphenol A diglycidyl ethers (BADGE) is one class of human-made chemicals, and it is one of the most widely used raw materials for epoxy resins. As an active compound, BADGE undergoes biotransformation in vitro and in vivo. However, there is a limited understanding of the biotransformation of BADGE and toxicity studies on transformation products. We conducted comprehensive research on the metabolic transformation of BADGE in vitro and in vivo. The results showed that 12 metabolites and 7 metabolites were identified in vitro and in vivo, respectively. Four biotransformation products, including M1 (hydrolysis), M3 (dehydroxylation), M10 (carboxylation), and M11 (glucose conjugation), can be found in both in vitro and in vivo samples. The main metabolic pathways were hydroxylation, carboxylation, cysteine (Cys) conjugation, and glucose conjugation. Besides, our results suggested the existence of metabolic differences in BADGE between species and gender. Further, we investigated toxicities of BADGE metabolites in-silico. Importantly, some hydrolysis (M1, M2), hydroxylation (M7), and oxidation (M8) products showed similar or even higher potential toxicity than BADGE depending on the endpoint. These results enrich the biotransformation profiles of BADGE and provide useful information for understanding its biotransformation in humans and a reference for the comprehensive assessment for human health risk.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.fct.2022.113252DOI Listing

Publication Analysis

Top Keywords

vitro vivo
20
bisphenol diglycidyl
8
badge
8
understanding biotransformation
8
glucose conjugation
8
vitro
5
vivo
5
biotransformation
5
metabolic
4
metabolic profiling
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!