AI Article Synopsis

Article Abstract

Method: Participants included 30 children and adolescents (23 males, 13 females) with cerebral palsy and other neuromuscular diseases, aged 6-18. Data were collected and compared at baseline and after 12 weeks of home-based practice via a powered wheelchair or a simulator. Powered mobility ability was determined by the Powered Mobility Program (PMP), the Israel Ministry of Health's Powered Mobility Proficiency Test (PM-PT) and the Assessment of Learning Powered Mobility (ALP).

Results: All participants practiced for the required amount of time and both groups reported a similar user experience. Both groups achieved significant improvement following the practice period as assessed by the PMP and PM-PT assessments, with no significant differences between them. A significant improvement was found in the ALP assessment outcomes for the powered wheelchair group only.

Conclusions: This is the first study, to our knowledge, that compares two different wheelchair training methods. Simulator-based practice is an effective training option for powered mobility for children with physical disabilities aged 6-18 years old, demonstrating that it is possible to provide driving skill practice opportunities safe, controlled environments.

Download full-text PDF

Source
http://dx.doi.org/10.1080/10400435.2022.2084183DOI Listing

Publication Analysis

Top Keywords

powered mobility
24
powered wheelchair
12
powered
8
simulator-based practice
8
mobility
6
practice
5
pediatric powered
4
mobility training
4
training powered
4
wheelchair
4

Similar Publications

Emerging wearable devices would benefit from integrating ductile photovoltaic light-harvesting power sources. In this work, we report a small-molecule acceptor (SMA), also known as a non-fullerene acceptor (NFA), designed for stretchable organic solar cell (-OSC) blends with large mechanical compliance and performance. Blends of the organosilane-functionalized SMA BTP-Si4 with the polymer donor PNTB6-Cl achieved a power conversion efficiency (PCE) of >16% and ultimate strain (ε) of >95%.

View Article and Find Full Text PDF

Thick metamorphic buffers are considered indispensable for III-V semiconductor heteroepitaxy on large lattice and thermal-expansion mismatched silicon substrates. However, III-nitride buffers in conventional GaN-on-Si high electron mobility transistors (HEMT) impose a substantial thermal resistance, deteriorating device efficiency and lifetime by throttling heat extraction. To circumvent this, a systematic methodology for the direct growth of GaN after the AlN nucleation layer on six-inch silicon substrates is demonstrated using metal-organic vapor phase epitaxy (MOVPE).

View Article and Find Full Text PDF

Advances in integrated power supplies for self-powered bioelectronic devices.

Nanoscale

January 2025

Department of Chemical and Biomolecular Engineering, College of Design and Engineering, National University of Singapore, 117585, Singapore.

Bioelectronic devices with medical functions have attracted widespread attention in recent years. Power supplies are crucial components in these devices, which ensure their stable operation. Biomedical devices that utilize external power supplies and extended electrical wires limit patient mobility and increase the risk of discomfort and infection.

View Article and Find Full Text PDF

Single-particle tracking reveals heterogeneous PIEZO1 diffusion.

Biophys J

January 2025

Department of Physiology & Biophysics, UC Irvine, Irvine, California; Department of Biomedical Engineering, UC Irvine, Irvine, California; Center for Complex Biological Systems, UC Irvine, Irvine, California; Sue and Bill Gross Stem Cell Research Center, UC Irvine, Irvine, California. Electronic address:

The mechanically-activated ion channel PIEZO1 is critical to numerous physiological processes, and is activated by diverse mechanical cues. The channel is gated by membrane tension and has been found to be mobile in the plasma membrane. We employed single particle tracking (SPT) of endogenous, tdTomato-tagged PIEZO1 using Total Internal Reflection Fluorescence Microscopy in live cells.

View Article and Find Full Text PDF

In China, a significant amount of coal fly ash is stored or used for landfill reclamation. The contaminants in coal fly ash (CFA) leachate can cause regional soil and groundwater contamination during long-term storage. This paper focuses on a coal gangue comprehensive utilisation power plant in Fenyang City, Shanxi Province, China, where the leaching characteristics of CFA were investigated by leaching tests.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!