The thematic role of extracellular loop of VraG in activation of the membrane sensor GraS in a cystic fibrosis MRSA strain differs in nuance from the CA-MRSA strain JE2.

PLoS One

Department of Microbiology and Immunology, Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire, United States of America.

Published: June 2022

Patients with cystic fibrosis (CF) often suffer recurrent bronchial bacterial infections that lead to deterioration of lung function over time. The infections in CF patients are often due to S. aureus and P. aeruginosa that colonize the airways. Significantly, methicillin-resistant S. aureus (MRSA) makes it challenging for treatment in CF patients due to its feature of multiple antibiotic resistance. In bronchial airways, cationic antimicrobial peptides are often present in mucosa cells, neutrophils, and macrophages that interfere with bacterial proliferation. The major mechanism for resistance to the bactericidal activity of cationic peptides in S. aureus is mediated by the GraRS two-component system that activates expression of MprF and DltABCD to increase surface positive charge to repel interactions with cationic peptides. We recently found that VraG, a membrane permease component of the VraFG efflux pumps, harbors a long 200-residue extracellular loop (EL) that utilizes K380 to interact with the negatively charged 9-residue extracellular loop of the membrane sensor GraS to control mprF expression in a community-acquired MRSA strain JE2. In this study, we extended this observation to a CF MRSA strain CF32A1 where we affirmed that the EL loop of VraG controls GraS-mediated signal transduction; however, in contrast to community acquired MRSA strain JE2, the CF MRSA strain CF32A1 requires both K380 and K388 in the EL of VraG to properly modulate signal transduction mediated by GraS. This effect was not attributable to the several single nucleotide polymorphisms that exist between VraG and GraS in the two MRSA strains.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9223312PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0270393PLOS

Publication Analysis

Top Keywords

mrsa strain
20
extracellular loop
12
strain je2
12
loop vrag
8
membrane sensor
8
sensor gras
8
cystic fibrosis
8
cationic peptides
8
strain cf32a1
8
signal transduction
8

Similar Publications

Prevalence and characterization of Staphylococcus aureus isolated from meat and milk in Northeastern Italy.

J Food Prot

December 2024

Université Paris-Saclay, Micalis Institute, INRAE, AgroParisTech, 78352 Jouy en Josas, France. Electronic address:

Staphylococcus aureus is a pathogenic microorganism often found in animal-derived foods and is known for its ability to readily develop resistance to antibiotic treatments. This study was designed to determine prevalence of S. aureus strains in raw milk and meat in Italy and to evaluate their antibiotic resistance profiles and biofilm production.

View Article and Find Full Text PDF

Objective: To investigate the molecular typing characteristics, drug resistance status and drug resistance gene carrying of food-borne Staphylococcus aureus in Ningxia.

Methods: Staphylococcus aureus isolated from food safety risk monitoring project in Ningxia in the past ten years were collected, drug resistance was detected using microbroth dilution method, enterotoxins were detected by real-time PCR. The strains were genotyped by pulsed field gel electrophoresis(PFGE) using SmaI endonuclease.

View Article and Find Full Text PDF

Repurposing pinaverium bromide against Staphylococcus and its biofilms with new mechanisms.

AMB Express

December 2024

Department of Laboratory Medicine, The Affiliated Changsha Hospital of Xiangya School of Medicine (The First Hospital of Changsha), Central South University, No. 311, Yingpan Road, Changsha, 410005, Hunan, China.

Antibiotic resistance by methicillin-resistant Staphylococcus aureus (MRSA) is an urgent threat to human health. The biofilm and persister cells formation ability of MRSA and Staphylococcus epidermidis often companied with extremely high antimicrobial resistance. Pinaverium bromide (PVB) is an antispasmodic compound mainly used for irritable bowel syndrome.

View Article and Find Full Text PDF

Antibiotic-resistant pathogens in public settings present a growing risk to human health. Staphylococcus aureus often asymptomatically colonizes human skin, while virulent strains cause soft tissue infections, osteomyelitis, endocarditis, and are associated with cystic fibrosis. Here we investigated the presence and distribution of multidrug-resistant S.

View Article and Find Full Text PDF

Because of the urgent need for new antibiotics to treat drug-resistant bacterial pathogens, we employed an assay that rapidly screens large quantities of compounds for their ability to interfere with bacterial protein synthesis, in particular, the delivery of amino acids to the ribosome via tRNA and elongation factor Tu (EF-Tu). We have identified a drug lead, named MGC-10, which kills Gram-positive bacteria, including methicillin-resistant (MRSA), with a MIC of 6 µM, while being harmless to mammalian cells in that concentration range. The antibacterial activity of MGC-10 was broad against over 50 strains of antibiotic-resistant samples obtained from hospital infections, where MGC-10 inhibited all tested strains of MRSA.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!