Most existing multiobjective evolutionary algorithms treat all decision variables as a whole to perform genetic operations and optimize all objectives with one population at the same time. Considering different control attributes, different decision variables have different optimization effects on each objective, so decision variables can be divided into convergence- or diversity-related variables. In this article, we propose a new metric called the optimization degree of the convergence-related decision variable to each objective to calculate the contribution objective of each decision variable. All decision variables are grouped according to their contribution objectives. Then, a multiobjective evolutionary algorithm, namely, decision variable contributing to objectives evolutionary algorithm (DVCOEA), has been proposed. In order to balance the convergence and diversity of the population, the DVCOEA algorithm combines the multipopulation multiobjective framework, where two different optimization strategies are designed to optimize the subpopulation and individuals in the external archive, respectively. Finally, DVCOEA is compared with several state-of-the-art algorithms on a number of benchmark functions. Experimental results show that DVCOEA is a competitive approach for solving large-scale multi/many-objective problems.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TCYB.2022.3180214DOI Listing

Publication Analysis

Top Keywords

decision variables
20
evolutionary algorithm
12
decision variable
12
decision
8
large-scale multi/many-objective
8
multiobjective evolutionary
8
objective decision
8
variables
6
multi-population multi-objective
4
evolutionary
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!