A novel biomimicked neuromorphic sensor for an energy efficient and highly scalable electronic tongue (E-tongue) is demonstrated with a metal-oxide-semiconductor field-effect transistor (MOSFET). By mimicking a biological gustatory neuron, the proposed E-tongue can simultaneously detect ion concentrations of chemicals on an extended gate and encode spike signals on the MOSFET, which acts as an input neuron in a spiking neural network (SNN). Such in-sensor neuromorphic functioning can reduce the energy and area consumption of the conventional E-tongue hardware. pH-sensitive and sodium-sensitive artificial gustatory neurons are implemented by using two different sensing materials: AlO for pH sensing and sodium ionophore X for sodium ion sensing. In addition, a sensitivity control function inspired by the biological sensory neuron is demonstrated. After the unit device characterization of the artificial gustatory neuron, a fully hardware-based E-tongue that can classify two distinct liquids is demonstrated to show a practical application of the artificial gustatory neurons.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.nanolett.2c01107DOI Listing

Publication Analysis

Top Keywords

artificial gustatory
16
gustatory neuron
12
electronic tongue
8
gustatory neurons
8
gustatory
5
neuron
5
bioinspired artificial
4
neuron neuromorphic
4
neuromorphic based
4
based electronic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!