Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
We studied the effect of 3D-culturing of cells in the form of cardiospheres on the expression of genes encoding vascular progenitor cell markers and angiogenesis regulators and on the production of proangiogenic factors. Cardiospheres were obtained by culturing mouse cardiac explants followed by self-assembly on poly-D-lysine. Gene expression was assessed by real-time PCR, and the production of proangiogenic factors was assessed by Microarray analysis of the cell secretome. It was found that cells in the cardiospheres in comparison with 2D-culture of cardiosphere-forming cells demonstrated increased expression of vascular progenitor cell markers (Pdgfrα, Kit, and Vegfr1) and angiogenesis regulatory factors (Vegf, Fgf2, and Angpt1), as well as an enhanced secretion of proangiogenic factors (ANGPT1, VEGF, CXCL16, and PIGF-2). Thus, culturing of cells in the form of cardiospheres can be considered as a basis for developing approaches to increasing their angiogenic activity and regenerative properties.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10517-022-05525-z | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!