A 3-D virtual human model for simulating heat and cold stress.

J Appl Physiol (1985)

Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, United States Army Medical Research and Development Command, Fort Detrick, Maryland.

Published: August 2022

In this study, we extended our previously developed anatomically detailed three-dimensional (3-D) thermoregulatory virtual human model for predicting heat stress to allow for predictions of heat and cold stress in one unified model. Starting with the modified Pennes bioheat transfer equation to estimate the spatiotemporal temperature distribution within the body as the underlying modeling structure, we developed a new formulation to characterize the spatial variation of blood temperature between body elements and within the limbs. We also implemented the means to represent heat generated from shivering and skin blood flow that apply to air exposure and water immersion. Then, we performed simulations and validated the model predictions with experimental data from nine studies, representing a wide range of heat- and cold-stress conditions in air and water and physical activities. We observed excellent agreement between model predictions and measured data, with average root mean squared errors of 0.2°C for core temperature, 0.9°C for mean skin temperature, and 27 W for heat from shivering. We found that a spatially varying blood temperature profile within the limbs was crucial to accurately predict core body temperature changes during very cold exposures. Our 3-D thermoregulatory virtual human model consistently predicted the body's thermal state accurately for each of the simulated hot and cold environmental conditions and exertional heat stress. As such, it serves as a reliable tool to assess whole body, localized tissue, and, potentially, organ-specific injury risks, helping develop injury prevention and mitigation strategies in a systematic and expeditious manner. This work provides a new, unified modeling framework to accurately predict the human body's thermal response to both heat and cold stress caused by environmental conditions and exertional physical activity in one mathematical model. We show that this 3-D anatomically detailed model accurately predicts the spatiotemporal temperature distribution in the body under extreme conditions for exposures to air and water and could be used to help design medical interventions and countermeasures to prevent injuries.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9359647PMC
http://dx.doi.org/10.1152/japplphysiol.00089.2022DOI Listing

Publication Analysis

Top Keywords

virtual human
12
human model
12
heat cold
12
cold stress
12
model
8
anatomically detailed
8
3-d thermoregulatory
8
thermoregulatory virtual
8
heat stress
8
spatiotemporal temperature
8

Similar Publications

Toward structured abdominal examination training using augmented reality.

Int J Comput Assist Radiol Surg

January 2025

Faculty of Computer Science and Research Campus STIMULATE, Otto-von-Guericke University of Magdeburg, Magdeburg, Germany.

Purpose: Structured abdominal examination is an essential part of the medical curriculum and surgical training, requiring a blend of theory and practice from trainees. Current training methods, however, often do not provide adequate engagement, fail to address individual learning needs or do not cover rare diseases.

Methods: In this work, an application for structured Abdominal Examination Training using Augmented Reality (AETAR) is presented.

View Article and Find Full Text PDF

Background: Thyroid disorders have significant clinical sequelae, including impaired growth in children, metabolic abnormalities, and impaired cognitive function. However, available studies on burden of thyroid diseases in people with human immunodeficiency virus (HIV), particularly its prevalence and its interaction with HIV related factors (like CD4 count), are controversial. This review aimed to provide a comprehensive summary and analysis on the extent of thyroid dysfunctions in this population.

View Article and Find Full Text PDF

The RNA-binding properties of Annexins.

J Mol Biol

January 2025

Elettra Sincrotrone Trieste, Italy; The Wohl Institute, King's College London, 5 Cutcombe Rd, SW59RT London, UK. Electronic address:

Annexins are a family of calcium-dependent phospholipid-binding proteins involved in crucial cellular processes such as cell division, calcium signaling, vesicle trafficking, membrane repair, and apoptosis. In addition to these properties, Annexins have also been shown to bind RNA, although this function is not universally recognized. In the attempt to clarify this important issue, we employed an integrated combination of experimental and computational approaches.

View Article and Find Full Text PDF

Pedestrians use visual cues (i.e., gaze) to communicate with the other road users, and visual attention towards the surrounding environment is essential to be situationally aware and avoid oncoming conflicts.

View Article and Find Full Text PDF

Impact of thrombus composition on virtual thrombectomy procedures using human clot analogues mechanical data.

J Mech Behav Biomed Mater

January 2025

Department of Chemistry, Materials and Chemical Engineering 'Giulio Natta', Politecnico di Milano, Italy.

Endovascular thrombectomy (EVT) aims at restoring blood flow in case of acute ischemic stroke by removing the thrombus occluding a large cerebral artery. During the procedure with stent-retriever, the thrombus is captured within the device, which is then retrieved, subjecting the thrombus to several forces, potentially leading to its fragmentation. In silico studies, along with mechanical characterisation of thrombi, can enhance our understanding of the EVT, helping the development of new devices and interventional strategies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!