Proteomic analysis of small extracellular vesicles (sEVs) poses a significant challenge. A 'gold-standard' method for plasma sEV enrichment for downstream proteomic analysis is yet to be established. Methods were evaluated for their capacity to successfully isolate and enrich sEVs from plasma, minimise the presence of highly abundant plasma proteins, and result in the optimum representation of sEV proteins by liquid chromatography tandem mass spectrometry. Plasma from four cattle (Bos taurus) of similar physical attributes and genetics were used. Three methods of sEV enrichment were utilised: ultracentrifugation (UC), size-exclusion chromatography (SEC), and ultrafiltration (UF). These methods were combined to create four groups for methodological evaluation: UC + SEC, UC + SEC + UF, SEC + UC and SEC + UF. The UC + SEC method yielded the highest number of protein identifications (IDs). The SEC + UC method reduced plasma protein IDs compared to the other methods, but also resulted in the lowest number of protein IDs overall. The UC + SEC + UF method decreased sEV protein ID, particle number, mean and mode particle size, particle yield, and did not improve purity compared to the UC + SEC method. In this study, the UC + SEC method was the best method for sEV protein ID, purity, and overall particle yield. Our data suggest that the method and sequence of sEV enrichment strategy impacts protein ID, which may influence the outcome of biomarker discovery studies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9229025PMC
http://dx.doi.org/10.3390/proteomes10020019DOI Listing

Publication Analysis

Top Keywords

proteomic analysis
12
sev enrichment
12
small extracellular
8
method
8
number protein
8
ids method
8
protein ids
8
sev protein
8
particle yield
8
plasma
6

Similar Publications

Bacterial endospores are ubiquitous and are responsible for various human infections. Recently, we reported that an ionic liquid (IL)-based sample preparation method (named pTRUST) facilitated highly efficient shotgun analysis of the Bacillus subtilis spore proteome in trace samples. In this study, we evaluated the efficiency and applicability of the pTRUST technology using three different spore preparations: one purified from the closely related subspecies B.

View Article and Find Full Text PDF

The cation-proton antiporter (CPA) superfamily plays pivotal roles in regulating cellular ion and pH homeostasis in plants. To date, the regulatory functions of CPA family members in rice (Oryza sativa L.) have not been elucidated.

View Article and Find Full Text PDF

SPT5 regulates RNA polymerase II stability via Cullin 3-ARMC5 recognition.

Sci Adv

January 2025

Simpson Querrey Institute for Epigenetics, Department of Biochemistry and Molecular Genetics Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.

The stability of RNA polymerase II (Pol II) is tightly regulated during transcriptional elongation for proper control of gene expression. Our recent studies revealed that promoter-proximal Pol II is destabilized via the ubiquitin E3 ligase cullin 3 (CUL3) upon loss of transcription elongation factor SPT5. Here, we investigate how CUL3 recognizes chromatin-bound Pol II as a substrate.

View Article and Find Full Text PDF

Growing evidence supports the importance of extracellular vesicle (EV) as mediators of communication in pathological processes, including those underlying respiratory disease. However, establishing methods for isolating and characterizing EVs remains challenging, particularly for respiratory samples. This study set out to address this challenge by comparing different EV isolation methods and evaluating their impacts on EV yield, markers of purity, and proteomic signatures, utilizing equine/horse bronchoalveolar lavage samples.

View Article and Find Full Text PDF

The ligninolytic catalytic network reveals the importance of auxiliary enzymes in lignin biocatalysts.

Proc Natl Acad Sci U S A

January 2025

Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China.

Lignin degradation by biocatalysts is a key strategy to develop a plant-based sustainable carbon economy and thus alleviate global climate change. This process involves synergy between ligninases and auxiliary enzymes. However, auxiliary enzymes within secretomes, which are composed of thousands of enzymes, remain enigmatic, although several ligninolytic enzymes have been well characterized.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!