Rice bacterial blight disease caused by pv. () is one of the most severe diseases of rice. However, the regulatory mechanisms of rice defense against remain poorly understood. The rice MEDIATOR25, OsMED25-a subunit of the mediator multiprotein complex that acts as a universal adaptor between transcription factors (TFs) and RNA polymerase II-plays an important role in jasmonic acid (JA)-mediated lateral root development in rice. In this study, we found that OsMED25 also plays an important role in JA- and auxin-mediated resistance responses against rice bacterial blight. The loss-of-function mutant exhibited high resistance to . The expression of JA-responsive defense-related genes regulated by OsMYC2, which is a positive TF in JA signaling, was downregulated in mutants. Conversely, expression of some OsMYC2-independent JA-responsive defense-related genes was upregulated in mutants. Furthermore, OsMED25 interacted with some AUXIN RESPONSE FACTORS (OsARFs) that regulate auxin signaling, whereas the mutated osmed25 protein did not interact with the OsARFs. The expression of auxin-responsive genes was downregulated in mutants, and auxin-induced susceptibility to was not observed in mutants. These results indicate that OsMED25 plays an important role in the stable regulation of JA- and auxin-mediated signaling in rice defense response.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9229619 | PMC |
http://dx.doi.org/10.3390/plants11121601 | DOI Listing |
Plant Commun
January 2025
Biotechnology Research Institute of Shanghai Academy of Agricultural Sciences, Shanghai Key Laboratory of Agricultural Genetics and Breeding,China, Key Laboratory for Safety Assessment (Environment) of Agricultural Genetically Modified Organisms ,Ministry of Agriculture and Rural Affairs, China. Electronic address:
Plants (Basel)
January 2025
The New Zealand Institute for Plant & Food Research Limited, 120 Mt Albert Road, Auckland 1025, New Zealand.
Calcium-dependent protein kinases (CPKs) are plant proteins that directly bind calcium ions before phosphorylating substrates involved in biotic and abiotic stress responses, as well as development. CPK3 () is involved with plant signaling pathways such as stomatal movement regulation, salt stress response, apoptosis, seed germination and pathogen defense. In this study, and its orthologues in relatively distant plant species such as rice (, monocot) and kiwifruit (, asterid eudicot) were analyzed in response to drought, bacteria, fungi, and virus infections.
View Article and Find Full Text PDFPlants (Basel)
January 2025
State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China.
Phosphorus (P) is an essential nutrient for rice growth, and the presence of phosphate-solubilizing bacteria (PSB) is an effective means to increase soil P content. However, the direct application of PSB may have minimal significance due to their low survival in soil. Biochar serves as a carrier that enhances microbial survival, and its porous structure and surface characteristics ensure the adsorption of .
View Article and Find Full Text PDFMicroorganisms
January 2025
State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China.
Phytopathogenic Jagger causes lettuce drop, a destructive soil-borne disease. As potential biocontrol agents for this disease, 2 of 31 bacterial strains isolated from soil samples from fields containing Jagger were identified using in vitro antagonistic assays against Jagger. Bioactivity experiments showed that Bac20 had higher inhibitory activity against Jagger than Bac45.
View Article and Find Full Text PDFMicroorganisms
December 2024
Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan.
The assembly of plant root microbiomes is a dynamic process. Understanding the roles of root-associated microbiomes in rice development requires dissecting their assembly throughout the rice life cycle under diverse environments and exploring correlations with soil properties and rice physiology. In this study, we performed amplicon sequencing targeting fungal ITS and the bacterial 16S rRNA gene to characterize and compare bacterial and fungal community dynamics of the rice root endosphere and soil in organic and conventional paddy fields.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!