Maize is one of the most widely used plants in the agricultural industry, and the fields of application of this plant are broad. The experiment was conducted at the Látókép Crop Production Experimental Station of the University of Debrecen, Hungary. Three mid-ripening maize hybrids with different FAO numbers were used in the present study. The effects of different nitrogen supplies were examined as a variable rate of abiotic stress and the interrelationship among the essential nutrients through the nutrient acquisition and partitioning of the different vegetative and generative plant parts. The results showed that NPK application compared to the control treatment (no fertilizer application) increased DM in all tissues of maize, while increasing nitrogen application from 120 to 300 kg ha had no significant effect on this trait. The highest protein content was obtained with the nitrogen application of 120 kg ha, and the higher nitrogen fertilizer application had no significant effect on this trait. Seeds and leaves had a maximum zinc and manganese value in terms of nitrogen content (protein). Dry matter was positively correlated with nitrogen, potassium, and manganese content, while the dry matter had a negative correlation with nickel content. In general, to achieve a maximum quantitative and qualitative yield, it is recommended to use NPK fertilizer with a rate of 120 kg ha N for maize cultivation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9228499 | PMC |
http://dx.doi.org/10.3390/plants11121593 | DOI Listing |
BMC Plant Biol
January 2025
Maize and Millet Research Institute, Yousafwala, Sahiwal, Pakistan.
Heat stress poses a significant challenge for maize production, especially during the spring when high temperatures disrupt cellular processes, impeding plant growth and development. The B-cell lymphoma-2 (Bcl-2) associated athanogene (BAG) gene family is known to be relatively conserved across various species. It plays a crucial role as molecular chaperone cofactors that are responsible for programmed cell death and tumorigenesis.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Horticulture, Karaj Branch, Islamic Azad University, Karaj, Iran.
In maize breeding, enhancing yield through genetic insights is crucial yet challenged by the complex interplay of agronomic traits. This study utilized a diallel mating design involving nine advanced early maize lines to dissect the genetic architecture underlying key agronomic traits and their impact on yield. Over two consecutive years (2018-2019 and 2019-2020), 36 hybrids derived from these lines were grown across two locations, Karaj, Alborz, Iran and Kermanshah (2019-2020), Iran, in a randomized complete block design with three replications.
View Article and Find Full Text PDFPhysiol Mol Biol Plants
December 2024
ICAR-Central Potato Research Institute, Bemloi, Shimla, Himachal Pradesh 171001 India.
Following the identification of the self-compatibility gene () in diploid potatoes two decades ago, the breeding of inbred based diploid hybrid potatoes made its way. Tetraploid potatoes have a long history of cultivation through domestication and selection. Tetrasomic inheritance, heterozygosity and clonal propagation complicate genetic studies, resulting in a low genetic gain in potato breeding.
View Article and Find Full Text PDFSci Rep
December 2024
International Maize and Wheat Improvement Center (CIMMYT), United Nations Avenue, Gigiri, PO Box 25171, Nairobi, Kenya.
Hybrid maize seed production in Africa is dependent upon manual detasseling of the female parental lines, often resulting in plant damage that can lead to reduced seed yields on those detasseled lines. Additionally, incomplete detasseling can result in hybrid purity issues that can lead to production fields being rejected. A unique nuclear genetic male sterility seed production technology, referred to as Ms44-SPT, was developed to avoid hybrid seed loss and to improve the purity and quality of hybrid maize production.
View Article and Find Full Text PDFSci Rep
December 2024
Institute of Agricultural Biotechnology/Institute of Agricultural Quality Standard and Testing Technology, Jilin Academy of Agricultural Sciences (Northeast Innovation Center of Agricultural Science and Technology in China), Changchun, China.
The increasing development of new genetically modified organisms underscores the critical need for comprehensive safety assessments, emphasizing the significance of molecular evidence such as gene integration, copy numbers, and adjacent sequences. In this study, the maize nitrate-efficient utilization gene ZmNRT1.1 A was introduced into maize variety y822 using transgenic technology, producing transgenic maize events ND4401 and ND4403 with enhanced tolerance to low nitrogen stress.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!