Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In plants, water flows are the major driving force behind growth and play a crucial role in the life cycle. To study hydrodynamics, methods based on tracking small particles inside water flows attend a special place. Thanks to these tools, it is possible to obtain information about the dynamics of the spatial distribution of the flux characteristics. In this paper, using contrast-enhanced magnetic resonance imaging (MRI), we show that gadolinium chelate, used as an MRI contrast agent, marks the structural characteristics of the xylem bundles of maize stem nodes and internodes. Supplementing MRI data, the high-precision visualization of xylem vessels by laser scanning microscopy was used to reveal the structural and dimensional characteristics of the stem vascular system. In addition, we propose the concept of using prototype "Y-type xylem vascular connection" as a model of the elementary connection of vessels within the vascular system. A Reynolds number could match the microchannel model with the real xylem vessels.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9228485 | PMC |
http://dx.doi.org/10.3390/plants11121533 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!