A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Interpreting protein variant effects with computational predictors and deep mutational scanning. | LitMetric

Interpreting protein variant effects with computational predictors and deep mutational scanning.

Dis Model Mech

MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, UK.

Published: June 2022

Computational predictors of genetic variant effect have advanced rapidly in recent years. These programs provide clinical and research laboratories with a rapid and scalable method to assess the likely impacts of novel variants. However, it can be difficult to know to what extent we can trust their results. To benchmark their performance, predictors are often tested against large datasets of known pathogenic and benign variants. These benchmarking data may overlap with the data used to train some supervised predictors, which leads to data re-use or circularity, resulting in inflated performance estimates for those predictors. Furthermore, new predictors are usually found by their authors to be superior to all previous predictors, which suggests some degree of computational bias in their benchmarking. Large-scale functional assays known as deep mutational scans provide one possible solution to this problem, providing independent datasets of variant effect measurements. In this Review, we discuss some of the key advances in predictor methodology, current benchmarking strategies and how data derived from deep mutational scans can be used to overcome the issue of data circularity. We also discuss the ability of such functional assays to directly predict clinical impacts of mutations and how this might affect the future need for variant effect predictors.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9235876PMC
http://dx.doi.org/10.1242/dmm.049510DOI Listing

Publication Analysis

Top Keywords

deep mutational
12
predictors
8
computational predictors
8
functional assays
8
mutational scans
8
data
5
interpreting protein
4
variant
4
protein variant
4
variant effects
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!