Oligodendrocytes (oligodendroglial cells) are glial cells that wrap neuronal axons with their differentiated plasma membranes called myelin membranes. In the pathogenesis of inflammatory cytokine-related oligodendroglial cell and myelin diseases such as multiple sclerosis (MS), typical inflammatory cytokines tumor necrosis factor α (TNFα) and interleukin-6 (IL-6) are thought to contribute to the degeneration and/or progression of the degeneration of oligodendroglial cells and, in turn, the degeneration of naked neuronal cells in the central nervous system (CNS) tissues. Despite the known involvement of these inflammatory cytokines in disease progression, it has remained unclear whether and how TNFα or IL-6 affects the oligodendroglial cells themselves or indirectly. Here we show that TNFα or IL-6 directly inhibits morphological differentiation in FBD-102b cells, which are differentiation models of oligodendroglial cells. Their phenotype changes were supported by the decreased expression levels of oligodendroglial cell differentiation and myelin marker proteins. In addition, TNFα or IL-6 decreased phosphorylation levels of Akt kinase, whose upregulation has been associated with promoting oligodendroglial cell differentiation. Hesperetin, a flavonoid mainly contained in citrus fruit, is known to have neuroprotective effects. Hesperetin might also be able to resolve pre-illness conditions, including the irregulated secretion of cytokines, through diet. Notably, the addition of hesperetin into cells recovered TNFα- or IL-6-induced inhibition of differentiation, as supported by increased levels of marker protein expression and phosphorylation of Akt kinase. These results suggest that TNFα or IL-6 itself contributes to the inhibitory effects on the morphological differentiation of oligodendroglial cells, possibly providing information not only on their underlying pathological effects but also on flavonoids with potential therapeutic effects at the molecular and cellular levels.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9230394 | PMC |
http://dx.doi.org/10.3390/neurolint14020039 | DOI Listing |
Medicines (Basel)
January 2025
Laboratory of Molecular Neurology, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan.
Introduction: In the central nervous system (CNS), proper interaction between neuronal and glial cells is crucial for the development of mature nervous tissue. Hypomyelinating leukodystrophies (HLDs) are a group of genetic CNS disorders characterized by hypomyelination and/or demyelination. In these conditions, genetic mutations disrupt the biological functions of oligodendroglial cells, which are responsible for wrapping neuronal axons with myelin sheaths.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Medical Life Sciences, College of Medicine, The Catholic University of Korea, Seoul, 06591, Korea.
Human cerebral organoids serve as a quintessential model for deciphering the complexities of brain development in a three-dimensional milieu. However, imaging these organoids, particularly when they exceed several millimeters in size, has been curtailed by the technical impediments such as phototoxicity, slow imaging speeds, and inadequate resolution and imaging depth. Addressing these pivotal challenges, our study has pioneered a high-speed scanning microscope, synergistically coupled with advanced computational image processing.
View Article and Find Full Text PDFBrain Commun
January 2025
Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 0AW, UK.
The extent to which glial cell turnover features in successful remyelination is unclear. In this study, the rat caudal cerebellar peduncle-ethidium bromide lesion model was used to profile oligodendroglial and microglial/macrophage cell death and proliferation dynamics over the course of repair. Lesioned and control tissue was co-labelled with antibody markers for cell identity, proliferation, and apoptosis (TUNEL assay), then imaged at full thickness using confocal microscopy and quantified using custom CellProfiler pipelines.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Institut für Biochemie, Friedrich-Alexander-Universität Erlangen-Nürnberg, D91054 Erlangen, Germany.
Oligodendroglial cells generate myelin sheaths in the vertebrate central nervous system to render rapid saltatory conduction possible and express the highly related Sox8, Sox9 and Sox10 transcription factors. While Sox9 and Sox10 fulfill crucial regulatory roles, Sox8 has only a limited impact on oligodendroglial development and myelination. By replacing Sox10 with Sox8 or Sox9 in the oligodendroglial Oln93 cell line, and comparing the expression profiles, we show here that Sox8 regulates the same processes as Sox10 and Sox9, but exhibits a substantially lower transcriptional activity under standard culture conditions.
View Article and Find Full Text PDFbioRxiv
December 2024
Department of Pathology, University of Iowa, Iowa City, IA 52242, USA.
Oligodendroglial lineage cells (OLCs) are critical for neuronal support functions, including myelination and remyelination. Emerging evidence reveals their active roles in neuroinflammation, particularly in conditions like Multiple Sclerosis (MS). This study explores the inflammatory translatome of OLCs during the early onset of experimental autoimmune encephalomyelitis (EAE), an established MS model.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!