A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Discriminant Analysis PCA-LDA Assisted Surface-Enhanced Raman Spectroscopy for Direct Identification of Malaria-Infected Red Blood Cells. | LitMetric

Various methods for detecting malaria have been developed in recent years, each with its own set of advantages. These methods include microscopic, antigen-based, and molecular-based analysis of blood samples. This study aimed to develop a new, alternative procedure for clinical use by using a large data set of surface-enhanced Raman spectra to distinguish normal and infected red blood cells. PCA-LDA algorithms were used to produce models for separating (3D7)-infected red blood cells and normal red blood cells based on their Raman spectra. Both average normalized spectra and spectral imaging were considered. However, these initial spectra could hardly differentiate normal cells from the infected cells. Then, discrimination analysis was applied to assist in the classification and visualization of the different spectral data sets. The results showed a clear separation in the PCA-LDA coordinate. A blind test was also carried out to evaluate the efficiency of the PCA-LDA separation model and achieved a prediction accuracy of up to 80%. Considering that the PCA-LDA separation accuracy will improve when a larger set of training data is incorporated into the existing database, the proposed method could be highly effective for the identification of malaria-infected red blood cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9231316PMC
http://dx.doi.org/10.3390/mps5030049DOI Listing

Publication Analysis

Top Keywords

red blood
20
blood cells
20
surface-enhanced raman
8
identification malaria-infected
8
malaria-infected red
8
raman spectra
8
pca-lda separation
8
cells
7
blood
6
pca-lda
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!