A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Network Approaches to Integrate Analyses of Genetics and Metabolomics Data with Applications to Fetal Programming Studies. | LitMetric

The integration of genetics and metabolomics data demands careful accounting of complex dependencies, particularly when modelling familial omics data, e.g., to study fetal programming of related maternal-offspring phenotypes. Efforts to identify genetically determined metabotypes using classic genome wide association approaches have proven useful for characterizing complex disease, but conclusions are often limited to a series of variant-metabolite associations. We adapt Bayesian network models to integrate metabotypes with maternal-offspring genetic dependencies and metabolic profile correlations in order to investigate mechanisms underlying maternal-offspring phenotypic associations. Using data from the multiethnic Hyperglycemia and Adverse Pregnancy Outcome (HAPO) study, we demonstrate that the strategic specification of ordered dependencies, pre-filtering of candidate metabotypes, incorporation of metabolite dependencies, and penalized network estimation methods clarify potential mechanisms for fetal programming of newborn adiposity and metabolic outcomes. The exploration of Bayesian network growth over a range of penalty parameters, coupled with interactive plotting, facilitate the interpretation of network edges. These methods are broadly applicable to integration of diverse omics data for related individuals.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9229972PMC
http://dx.doi.org/10.3390/metabo12060512DOI Listing

Publication Analysis

Top Keywords

fetal programming
12
genetics metabolomics
8
metabolomics data
8
omics data
8
bayesian network
8
network
5
data
5
network approaches
4
approaches integrate
4
integrate analyses
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!