Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 144
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 144
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 212
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3106
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
is considered to be an effective host for erythromycin. However, little is known about the regulation in terms of its metabolism. To develop an accurate model-driven strategy for the efficient production of erythromycin, a genome-scale metabolic model (iJL1426) was reconstructed for the industrial strain. The final model included 1426 genes, 1858 reactions, and 1687 metabolites. The accurate rates of the growth predictions for the 27 carbon and 31 nitrogen sources available were 92.6% and 100%, respectively. Moreover, the simulation results were consistent with the physiological observation and C metabolic flux analysis obtained from the experimental data. Furthermore, by comparing the single knockout targets with earlier published results, four genes coincided within the range of successful knockouts. Finally, iJL1426 was used to guide the optimal addition strategy of n-propanol during industrial erythromycin fermentation to demonstrate its ability. The experimental results showed that the highest erythromycin titer was 1442.8 μg/mL at an n-propanol supplementation rate of 0.05 g/L/h, which was 45.0% higher than that without n-propanol supplementation, and the erythromycin-specific synthesis rate was also increased by 30.3%. Therefore, iJL1426 will lead to a better understanding of the metabolic capabilities and, thus, is helpful in a systematic metabolic engineering approach.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9228414 | PMC |
http://dx.doi.org/10.3390/metabo12060509 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!