We examined relationships between thyroid hormone (TH) metabolites in humans by measuring 3,5-diiodothyronine (3,5-T2) and 3-iodothyronamine (3-T1AM) levels after liothyronine administration. In secondary analyses, we measured 3,5-T2 and 3-T1AM concentrations in stored samples from two clinical trials. In 12 healthy volunteers, THs and metabolites were documented for 96 h after a single dose of 50 mcg liothyronine. In 18 patients treated for hypothyroidism, levothyroxine therapy was replaced by daily dosing of 30-45 mcg liothyronine. Analytes were measured prior to the administration of liothyronine weekly for 6 weeks, and then hourly for 8 h after the last liothyronine dose of the study. In the weekly samples from the hypothyroid patients, 3,5-T2 was higher by 0.033 nmol/L with each mcg/dL increase in T4 and 0.24 nmol/L higher with each ng/dL increase in FT4 (-values = 0.007, 0.0365). In hourly samples after the last study dose of liothyronine, patients with T3 values higher by one ng/dL had 3-T1AM values that were lower by 0.004 nmol/L (-value = 0.0473); patients with 3,5-T2 higher by one nmol/L had 3-T1AM values higher by 2.45 nmol/L (-value = 0.0044). The positive correlations between weekly trough levels of 3,5-T2 and T4/FT4 during liothyronine therapy may provide insight into 3,5-T2 production, possibly supporting some production of 3,5-T2 from endogenous T4, but not from exogenous liothyronine. In hourly sampling after liothyronine administration, the negative correlation between T3 levels and 3-T1AM, but positive correlation between 3,5-T2 levels and 3-T1AM could support the hypothesis that 3-T1AM production occurs via 3,5-T2 with negative regulation by T3.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9227779 | PMC |
http://dx.doi.org/10.3390/metabo12060476 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!