Long noncoding RNAs (lncRNAs) and microRNAs (miRNAs) modulate gene expression programs in physiology and disease. Here, we report a noncoding RNA regulatory network that modulates myoblast fusion into multinucleated myotubes, a process that occurs during muscle development and muscle regeneration after injury. In early stages of human myogenesis, the levels of lncRNA OIP5-AS1 increased, while the levels of miR-7 decreased. Moreover, OIP5-AS1 bound and induced miR-7 decay via target RNA-directed miRNA decay; accordingly, loss of OIP5-AS1 attenuated, while antagonizing miR-7 accelerated, myotube formation. We found that the OIP5-AS1-mediated miR-7 degradation promoted myoblast fusion, as it derepressed the miR-7 target MYMX mRNA, which encodes the fusogenic protein myomixer (MYMX). Remarkably, an oligonucleotide site blocker interfered with the OIP5-AS1-directed miR-7 degradation, allowing miR-7 to accumulate, lowering MYMX production and suppressing myotube formation. These results highlight a mechanism whereby lncRNA OIP5-AS1-mediated miR-7 decay promotes myotube formation by stimulating a myogenic fusion program.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9262585 | PMC |
http://dx.doi.org/10.1093/nar/gkac524 | DOI Listing |
J Orthop Surg Res
January 2025
Department of Orthopaedics, Changde Hospital, Xiangya School of Medicine, Central South University (The First People's Hospital of Changde City), No. 818, Renminzhong Road, Wuling District, Changde, 415000, Hunan, China.
Objective: Fracture is a common traumatic disease and there is a risk of delayed healing after fracture occurs. This study aimed to explore the regulatory roles and clinical implications of OIP5-AS1 in delayed fracture healing.
Methods: The study included 80 normal fracture healing patients and 80 delayed fracture healing patients.
Life Sci
January 2025
Department of Pharmacology, School of Pharmacy, Qingdao University, No. 308 Ningxia Road, Shinan District, Qingdao 266021, China; Key Laboratory of Maternal & Fetal Medicine of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan 250014, China. Electronic address:
Aims: Gestational diabetes mellitus (GDM) provides offspring with a hyper-metabolic intrauterine microenvironment. In this study, we aimed to identify key differential microRNAs in GDM-derived exosomes and explore the potential mechanisms of abnormal embryonic development of islets in offspring.
Main Methods: Exosomes were extracted from umbilical vein blood of GDM and non-GDM (NGDM) parturients for microRNA sequencing.
Horm Mol Biol Clin Investig
December 2024
Department of Biochemistry, 37555 Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran.
One of the biggest challenges of today's society is cancer, which imposes a significant financial, emotional and spiritual burden on human life. Breast cancer (BC) is one of the most common cancers that affects people in society, especially women, and due to advanced treatment strategies and primary prevention, it is still the second cause of cancer-related deaths in society. Various genetic and environmental factors are involved in the development of BC.
View Article and Find Full Text PDFMol Cell Probes
December 2024
Department of Stomatology & Precision Biomedical Laboratory, Liaocheng People's Hospital, Medical School of Liaocheng University, Liaocheng, Shandong 252000, China.
Oral squamous cell carcinoma (OSCC), one of the most common types of head and neck squamous cell carcinoma (HNSCC), is characterized by high incidence and mortality. PVT1 is a long non-coding RNA (lncRNA) that plays an oncogenic role in various cancer types. This study aims to reveal the role and underlying molecular mechanism of PVT1 in OSCC progression.
View Article and Find Full Text PDFMol Biol Rep
November 2024
Department of Medical Genetics, Tabriz University of Medical Sciences, Tabriz, Iran.
One of the important and conserved microRNAs (miRNAs), miR-7-5p, is involved in several pathological mechanisms, including cell proliferation, apoptosis, migration, and metastasis. Dysregulation of this miRNA's expression is correlated with multiple diseases, especially cancer. Its role as a tumor suppressor has been demonstrated in various types of cancer, such as colorectal cancer, lung cancer, bladder cancer, breast cancer, and glioblastoma.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!