Identification of Pathogenicity-Related Effector Proteins and the Role of Piwsc1 in the Virulence of on Citrus Fruits.

J Fungi (Basel)

College Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.

Published: June 2022

Blue mold caused by is one of the two major postharvest diseases of citrus fruits. The interactions of pathogens with their hosts are complicated, and virulence factors that mediate pathogenicity have not yet been identified. In present study, a prediction pipeline approach based on bioinformatics and transcriptomic data is designed to determine the effector proteins of . Three hundred and seventy-five secreted proteins of were identified, many of which (29.07%) were enzymes for carbohydrate utilization. Twenty-nine candidates were further analyzed and the expression patterns of 12 randomly selected candidate effector genes were monitored during the early stages of growth on PDA and infection of Navel oranges for validation. Functional analysis of a cell wall integrity-related gene a core candidate, was performed by gene knockout. The deletion of resulted in reduced virulence on citrus fruits, as presented by an approximate 57% reduction in the diameter of lesions. In addition, the mycelial growth rate, spore germination rate, and sporulation of Δ decreased. The findings provide us with new insights to understand the pathogenesis of and develop an effective and sustainable control method for blue mold.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9224591PMC
http://dx.doi.org/10.3390/jof8060646DOI Listing

Publication Analysis

Top Keywords

citrus fruits
12
effector proteins
8
virulence citrus
8
blue mold
8
identification pathogenicity-related
4
pathogenicity-related effector
4
proteins role
4
role piwsc1
4
piwsc1 virulence
4
fruits blue
4

Similar Publications

Background: Presently, the mitigation and governance of obesity have surfaced as significant public health dilemmas on a global scale. A wealth of studies indicated that the host gut microbiota is instrumental in regulating the interplay between high-fat diet (HFD) intake and the pathogenesis of obesity. Physiological premature fruit drop, a major byproduct of citrus, is rich in a variety of bioactive constituents, yet its potential has remained underutilized for an extended period.

View Article and Find Full Text PDF

In this study, we aimed to enhance the photocatalytic performance of molybdenum oxide (MoO) thin films by doping with silver (Ag) via a spray pyrolysis technique. The primary objective for silver incorporation was intended to introduce additional energy levels into the band structure of MoO, improving its efficiency. Structural, optical, and photocatalytic properties were analyzed using X-ray diffraction (XRD) and optical spectroscopy.

View Article and Find Full Text PDF

Chemical fungicides have been used to control fungal diseases like Sclerotinia sclerotiorum. These fungicides must be restricted because of their toxicity and the development of resistance strains. Therefore, utilizing natural nanoscale materials in agricultural production is a potential alternative.

View Article and Find Full Text PDF

Ulcerative colitis (UC) treatment is often limited by adverse reactions and high recurrence rates, highlighting the need for safer, more effective therapies. Citrus medica 'Fingered' (C. medica), known for its anti-inflammatory properties, remains underexplored, particularly its polysaccharide components.

View Article and Find Full Text PDF

Facile Synthesis of Flower-cluster ZIF Nanocarriers: Performance in Controlled Release of Thiamethoxam and Insecticidal Activity.

Environ Res

January 2025

State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Ministry of Agriculture and Rural Affairs of China, Beijing 100081, China. Electronic address:

At present, it is highly important to develop nanopesticide, which can improve the effect of pesticides and reduce the risks of environmental. Zeolitic imidazolate framework (ZIF) is usually used as a nanocarrier of nanopesticide, which has a porous structure and stimuli-responsive properties. However, the drug loading performance and stability of ZIF are poor.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!