Insight into Biological Control Potential of against Asian Citrus Psyllid as a Vector of Citrus Huanglongbing Disease in America.

J Fungi (Basel)

Departamento de Microbiología e Inmunología-Laboratorio de Inmunología y Virología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, UANL, San Nicolás de los Garza, Nuevo León 66455, Mexico.

Published: May 2022

Studies on Speare are scarce. Among these, some reports have focused on phenotypic identification, based on its morphological structure and morphometric characteristics. This fungus is known to control economically important citrus crop pests. In recent years, has received increased attention as a control agent for the Asian citrus psyllid Kuwayama (Hemiptera: Liviidae), which causes the Huanglongbing (HLB) disease. Unfortunately, formal strains characterization is marginal, which mainly involves the role of biologically active exudates (metabolites) produced during their growth. Information regarding their mode of action and biocontrol potential is limited. However, epizootics reports of this fungus, under suitable environmental conditions for its development (25 °C to 28 °C and ~80% relative humidity), have demonstrated its parasitization efficacy. Therefore, it becomes challenging to determine whether strains may be developed as commercial products. In this review, we showed relevant information on isolation and bioassay strategies of to evaluate potential biocontrol strains under laboratory and field conditions in America.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9224614PMC
http://dx.doi.org/10.3390/jof8060573DOI Listing

Publication Analysis

Top Keywords

asian citrus
8
citrus psyllid
8
insight biological
4
biological control
4
control potential
4
potential asian
4
citrus
4
psyllid vector
4
vector citrus
4
citrus huanglongbing
4

Similar Publications

Transcriptomic Characterization of Phototransduction Genes of the Asian Citrus Psyllid Kuwayama.

Insects

December 2024

State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China.

Opsin plays a regulatory role in phototaxis of , functioning as the initial station in the phototransduction cascade. Our study aimed to explore the phototransduction pathway to identify elicitors that may enhance phototaxis in the future. The RNAi technique was employed to inhibit gene expression, followed by RNA-Seq analysis to identify phototransduction genes.

View Article and Find Full Text PDF

The Asian citrus psyllid, Diaphorina citri Kuwayama (Hemiptera: Liviidae), is a major pest of global citriculture. In the Americas and in Asia, D. citri vectors the phloem-limited bacterium, Candidatus Liberibacter asiaticus (CLas), which causes the fatal citrus disease huanglongbing, or citrus greening.

View Article and Find Full Text PDF

The identification of insect specific iAANAT inhibitors.

Arch Biochem Biophys

February 2025

Department of Chemistry, University of South Florida, Tampa, FL, 33620, USA. Electronic address:

An important aspect of food security is the development of innovative insecticides, particularly ones that specifically target insect pests and exhibit minimal toxicity to mammals. The insect arylalkylamine N-acyltransferases (iAANATs) could serve as targets for novel insecticides that satisfy these criteria. There exists a wealth of structural and biochemical information for the iAANATs and iAANAT knockdown experiments show that these enzymes are critical to insect health.

View Article and Find Full Text PDF

Unlabelled: transmits Liberibacter asiaticus (CLas) between citrus plants which causes the expression of huanglongbing disease in citrus. flavi-like virus (DcFLV) co-occurs intracellularly with CLas in populations in the field. However, the impact(s) of DcFLV presence on the insect vector and its interaction with the CLas phytopathogen remain unclear.

View Article and Find Full Text PDF

Genetic and physiological characteristics of edited citrus and their impact on HLB tolerance.

Front Genome Ed

December 2024

Department of Horticultural Sciences, Citrus Research and Education Center, University of Florida, Lake Alfred, FL, United States.

Article Synopsis
  • Huanglongbing (HLB) disease, triggered by the bacterium Liberibacter asiaticus, poses a serious threat to citrus production with no existing cure, making the development of resistant cultivars essential.
  • Researchers focused on the NONEXPRESSOR OF PATHOGENESIS-RELATED GENES (NPR) family, specifically modifying NPR1 and NPR3 genes in sweet orange trees to improve HLB resistance.
  • The genome-edited sweet orange varieties showed enhanced vigor compared to wild-type trees under greenhouse conditions, suggesting that targeted gene editing can help in developing HLB-tolerant citrus plants, although further field tests are required to confirm these results.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!