Ultraviolet (UV) fluorescence is a valuable tool for the imaging of a wide range of subjects. Like all imaging techniques, the key to success depends on the correct choice of equipment and approach used. In fluorescence photography, a filter is placed in front of the camera lens to block unwanted short-wavelength light from entering the camera, which would compromise the image. However, some filters exhibit fluorescence under UV light and can therefore have the potential to produce a color cast on the image. Filters also vary in how well they block unwanted light. A range of commonly used optical filters was assessed for fluorescence under UV light, and their optical transmission between 250 nm and 800 nm was measured. Finally, a simple method to enable the researcher to determine the fluorescence of the filters that they are using or wish to use for their work is described. The results indicate that the filters tested demonstrated a wide range of fluorescence under UV light and varying degrees of UV blocking. Some filters tested had equivalent or reduced fluorescence compared to Schott KV-418, which is a widely used, but, unfortunately, no longer manufactured UV blocking filter commonly used for fluorescence photography.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9224984 | PMC |
http://dx.doi.org/10.3390/jimaging8060162 | DOI Listing |
Anal Chim Acta
February 2025
Institute for Advanced Study (IAS), College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, 518060, China. Electronic address:
Background: Alzheimer's disease (AD) is a neurodegenerative disorder with a very long duration, posing a serious threat to people's life and health. To date, no medicine that can cure or reverse the disease has been developed or reported, so early diagnosis and timely intervention are essential. The concentration of Phosphorylated tau181 (P-tau181) in blood has been approved by FDA as a standard for assisting clinical diagnosis of AD.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
January 2025
Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, China.
The first shikimic acid derived fluorescent carbon dots (SACNDs-FITC) for multi-modal detection and simultaneous removal of Hg is revealed. The fluorescence of SACNDs-FITC centered at 520 nm can be selectively quenched by Hg, while the emission centered at 420 nm remains constant which can be used for self-calibration. Naked-eye distinguishable color change from yellow to colourless under daylight and from green to blue under UV light could be observed for SACNDs-FITC in the real-time detection of Hg.
View Article and Find Full Text PDFAnal Chem
January 2025
School of Life Sciences, Key Laboratory of Space Bioscience & Biotechnology, Northwestern Polytechnical University, Xi'an 710072, China.
Lymphoma is a malignant cancer characterized by a rapidly increasing incidence, complex etiology, and lack of obvious early symptoms. Efficient theranostics of lymphoma is of great significance in improving patient outcomes, empowering informed decision-making, and driving medical innovation. Herein, we developed a multifunctional nanoplatform for precise optical imaging and therapy of lymphoma based on a new photosensitizer (1-oxo-1-benzoo[de]anthracene-2,3-dicarbonitrile-triphenylamine (OBADC-TPA)).
View Article and Find Full Text PDFFront Biosci (Landmark Ed)
January 2025
Department of Cardiovascular Medicine, Binzhou Medical University Hospital, 256603 Binzhou, Shandong, China.
Background: Cellular vacuolization is a commonly observed phenomenon under physiological and pathological conditions. However, the mechanisms underlying vacuole formation remain largely unresolved.
Methods: LysoTracker Deep Red probes and Enhanced Green Fluorescent Protein-tagged light chain 3B (LC3B) plasmids were employed to differentiate the types of massive vacuoles.
Pharmaceutics
January 2025
Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
Acute liver injury (ALI) is a prevalent and potentially lethal condition globally, where pharmacotherapy plays a vital role. However, challenges such as rapid drug excretion and insufficient concentration at hepatic lesions often impede the treatment's effectiveness. We successfully prepared glycyrrhizinate monoammonium cysteine (GMC)-loaded lipid nanoparticles (LNPs) using high-pressure homogenization.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!