Coronary sinus (CS) catheterization is critical during catheter ablation (CA) of atrial fibrillation (AF). However, the association of CS electrical activity with atrial substrate modification has been barely investigated and mostly limited to analyses during AF. In sinus rhythm (SR), atrial substrate modification is principally assessed at a global level through P-wave analysis. Cross-correlating CS electrograms (EGMs) and P-waves’ features could potentiate the understanding of AF mechanisms. Five-minute surface lead II and bipolar CS recordings before, during, and after CA were acquired from 40 paroxysmal AF patients. Features related to duration, amplitude, and heart-rate variability of atrial activations were evaluated. Heart-rate adjustment (HRA) was applied. Correlations between each P-wave and CS local activation wave (LAW) feature were computed with cross-quadratic sample entropy (CQSE), Pearson correlation (PC), and linear regression (LR) with 10-fold cross-validation. The effect of CA between different ablation steps was compared with PC. Linear correlations: poor to mediocre before HRA for analysis at each P-wave/LAW (PC: max. +18.36%, p = 0.0017, LR: max. +5.33%, p = 0.0002) and comparison between two ablation steps (max. +54.07%, p = 0.0205). HRA significantly enhanced these relationships, especially in duration (P-wave/LAW: +43.82% to +69.91%, p < 0.0001 for PC and +18.97% to +47.25%, p < 0.0001 for LR, CA effect: +53.90% to +85.72%, p < 0.0210). CQSE reported negligent correlations (0.6−1.2). Direct analysis of CS features is unreliable to evaluate atrial substrate modification due to CA. HRA substantially solves this problem, potentiating correlation with P-wave features. Hence, its application is highly recommended.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9224671 | PMC |
http://dx.doi.org/10.3390/jcdd9060176 | DOI Listing |
J Vet Cardiol
December 2024
Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, 930 Campus Road, Ithaca, NY, 14853, USA. Electronic address:
A seven-year-old, male intact Newfoundland was referred for catheter ablation of supraventricular tachycardia. Activation mapping was performed using an electroanatomical mapping system to visualize the activation wavefront in a color-coded fashion on an anatomical shell. Atrial flutter with an early-meets-late signal (i.
View Article and Find Full Text PDFJACC Clin Electrophysiol
November 2024
Electrophysiology Section, Division of Cardiology, Hunter Holmes McGuire VA Medical Center, Richmond, Virginia, USA; Pauley Heart Center, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA. Electronic address:
Background: The mechanisms underlying postoperative atrial fibrillation (POAF) remain unclear.
Objectives: The aim of this study was to test the hypothesis that targeted chemical ganglionated plexi (GP) modulation of all major left atrial-pulmonary vein GP using novel nanoformulated calcium chloride (nCaCl) can reverse postoperative neuroelectrical remodeling by suppressing vagosympathetic nerve activity and the localized inflammatory process, both critical substrates of POAF.
Methods: In a novel canine model of POAF with serial thoracopericardiotomies, sympathetic nerve activity (SNA), vagal nerve activity (VNA) and GP nerve activity (GPNA) were recorded; spontaneous and in vivo AF vulnerability were assessed; and atrial and circulating inflammatory markers and norepinephrine (NE) were measured to determine the neuroelectrical remodeling that promotes POAF and its subsequent modulation with nCaCl GP treatment (n = 6) vs saline sham controls (n = 6).
Front Med (Lausanne)
December 2024
Division of Cardiovascular Sciences, School of Medical Sciences, University of Manchester, Manchester, United Kingdom.
Background: The sinoatrial node (SN) generates the heart rate (HR). Its spontaneous activity is regulated by a complex interplay between the modulation by the autonomic nervous system (ANS) and intrinsic factors including ion channels in SN cells. However, the systemic and intrinsic regulatory mechanisms are still poorly understood.
View Article and Find Full Text PDFJ Cardiovasc Electrophysiol
December 2024
Department of Cardiovascular Medicine, Tokyo Medical and Dental University, Tokyo, Japan.
Introduction: Atrial pacing maps are often used as substitutes for sinus rhythm (SR) maps to expedite mapping procedures. However, the impact of this method on electrophysiological parameters has not been systematically examined. This study aimed to elucidate the advantages and limitations of atrial pacing maps.
View Article and Find Full Text PDFCirc Arrhythm Electrophysiol
December 2024
Division of Cardiology, University of California San Francisco (H.H.H., A.C.L., M.M.S.).
Complex ventricular tachycardias involving the fascicular system (fascicular ventricular tachycardias [FVTs]) can be challenging. In this review, we describe our approach to the diagnosis and ablation of these arrhythmias with 10 illustrative cases that involve (1) differentiation from supraventricular tachycardia; (2) assessment for atypical bundle branch reentry and other interfascicular FVTs; (3) examination of P1/P2 activation sequences in sinus rhythm, pacing, and tachycardia; and (4) entrainment techniques to establish the tachycardia mechanism and aid circuit localization. To summarize, 5 cases had prior ablation with 2 previously misdiagnosed as supraventricular tachycardia.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!