Three-dimensional (3D) printing has great potential for creating tissues and organs to meet shortfalls in transplant supply, and biomaterial inks are key components of many such approaches. There is a need for biomaterial inks that facilitate integration, infiltration, and vascularization of targeted 3D-printed structures. This study is therefore focused on creating new biomaterial inks from self-assembled capillary alginate gel (Capgel), which possesses a unique microstructure of uniform tubular channels with tunable diameters and densities. First, extrusions of Capgel through needles (0.1-0.8 mm inner diameter) were investigated. It was found that Capgel ink extrudes as slurries of fractured and entangled particles, each retaining capillary microstructures, and that extruded line widths and particle sizes were both functions of needle inner diameter , specifically power-law relationships of ~ and ~, respectively. Next, various structures were successfully 3D-printed with Capgel ink, thus demonstrating that this biomaterial ink is stackable and self-supporting. To increase ink self-adherence, Capgel was coated with poly-L-lysine (PLL) to create a cationic "skin" prior to extrusion. It was hypothesized that, during extrusion of Capgel-PLL, the sheared particles fracture and thereby expose cryptic sites of negatively-charged biomaterial capable of forming new polyelectrolyte bonds with areas of the positively-charged PLL skin on neighboring entangled particles. This novel approach resulted in continuous, self-adherent extrusions that remained intact in solution. Human lung fibroblasts (HLFs) were then cultured on this ink to investigate biocompatibility. HLFs readily colonized Capgel-PLL ink and were strongly oriented by the capillary microstructures. This is the first description of successful 3D-printing with Capgel biomaterial ink as well as the first demonstration of the concept and formulation of a self-adherent Capgel-PLL biomaterial ink.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9222415PMC
http://dx.doi.org/10.3390/gels8060376DOI Listing

Publication Analysis

Top Keywords

biomaterial inks
16
biomaterial ink
12
capillary alginate
8
alginate gel
8
gel capgel
8
biomaterial
8
inner diameter
8
ink
8
capgel ink
8
entangled particles
8

Similar Publications

Decellularized cartilage tissue bioink formulation for osteochondral graft development.

Biomed Mater

January 2025

Department of Orthopaedic Surgery, University of Connecticut, Chemical, Materials & Biomolecular Engineering MC-3711, ARB7-E7018, 263 Farmington Avenue, Farmington, CT 06032, USA, Storrs, Connecticut, 06269, UNITED STATES.

Articular cartilage and osteochondral defect repair and regeneration presents significant challenges to the field of tissue engineering (TE). TE and regenerative medicine strategies utilizing natural and synthetic-based engineered scaffolds have shown potential for repair, however, they face limitations in replicating the intricate native microenvironment and structure to achieve optimal regenerative capacity and functional recovery. Herein, we report the development of a cartilage extracellular matrix (ECM) as a printable biomaterial for tissue regeneration.

View Article and Find Full Text PDF

Robocasting calcium phosphate compounds as a novel approach to creating customized structures with interconnected pores not only overcomes the limitations of traditional fabrication methods of calcium phosphate substitutes but also boosts the potential for bone tissue regeneration. The ink development is a key step in 3D printing. In this study, different inks consisting of magnesium- and sodium-doped carbonated hydroxyapatite, β-tricalcium phosphate, and Pluronic F-127 were prepared to design biomimetic bone scaffolds.

View Article and Find Full Text PDF

Optimal parameter setting and evaluation for ultraviolet-assisted direct ink writing bioprinting of nHA/PEGDA scaffold.

Biomed Mater

December 2024

Department of Oral and Maxillofacial Surgery, First Hospital of Shanxi Medical University, Xinjian South Road 85#, Taiyuan, China, Taiyuan, 030001, CHINA.

Ultraviolet-assisted Direct Ink Writing(UV-DIW), an extrusion-based additive manufacturing technology, has emerged as a prominent 3D printing technique and is currently an important topic in bone tissue engineering research. This study focused on the printability of double-network (DN) bioink (Nano-hydroxyapatite/Polyethylene glycol diacrylate(nHA/PEGDA)). Next, we search for the optimal UV-DIW printing parameters for the scaffold formed by nHA-PEGDA.

View Article and Find Full Text PDF

From lab to life: advances inbioprinting and bioink technology.

Biomed Mater

December 2024

Additive Manufacturing Laboratory, Department of Metallurgical and Materials Engineering, Defence Institute of Advanced Technology (DU), Girinagar Pune-411025 Maharashtra, India.

Bioprinting has the potential to revolutionize tissue engineering and regenerative medicine, offering innovative solutions for complex medical challenges and addressing unmet clinical needs. However, traditionalbioprinting techniques face significant limitations, including difficulties in fabricating and implanting scaffolds with irregular shapes, as well as limited accessibility for rapid clinical application. To overcome these challenges,bioprinting has emerged as a groundbreaking approach that enables the direct deposition of cells, biomaterials, and bioactive factors onto damaged organs or tissues, eliminating the need for pre-fabricated 3D constructs.

View Article and Find Full Text PDF

The upcoming era of flexible and wearable electronics necessitates the development of low-cost, flexible, biocompatible substrates amenable to the fabrication of active devices such as electronic devices, sensors and transducers. While natural biopolymers such as Silk are robust and biocompatible, long-term flexibility is a concern due to the inherent brittle nature of soft Silk thin films. This work elucidates the preparation and characterization of Silk-polyurethane (Silk-PU) composite film that provides long-duration flexibility.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!