Artificial shape-morphing hydrogels are emerging toward various applications, spanning from electronic skins to healthcare. However, the low freezing and drying tolerance of hydrogels hinder their practical applications in challenging environments, such as subzero temperatures and arid conditions. Herein, we report on a shape-morphing system of tough organohydrogels enabled by the spatially encoded rigid structures and its applications in conformal packaging of "island-bridge" stretchable electronics. To validate this method, programmable shape morphing of Fe (III) ion-stiffened Ca-alginate/polyacrylamide (PAAm) tough organohydrogels down to -50 °C, with long-term preservation of their 3D shapes at arid or even vacuum conditions, was successfully demonstrated, respectively. To further illustrate the potency of this approach, the as-made organohydrogels were employed as a material for the conformal packaging of non-stretchable rigid electronic components and highly stretchable liquid metal (galinstan) conductors, forming a so-called "island-bridge" stretchable circuit. The conformal packaging well addresses the mechanical mismatch between components with different elastic moduli. As such, the as-made stretchable shape-morphing device exhibits a remarkably high mechanical durability that can withstand strains as high as 1000% and possesses long-term stability required for applications under challenging conditions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9222875PMC
http://dx.doi.org/10.3390/gels8060331DOI Listing

Publication Analysis

Top Keywords

conformal packaging
12
applications challenging
8
tough organohydrogels
8
"island-bridge" stretchable
8
anti-freezing non-drying
4
non-drying localized
4
localized stiffening
4
shape-morphing
4
stiffening shape-morphing
4
organohydrogels
4

Similar Publications

Recently, interest in eco-friendly techniques for producing antibacterial food packaging films has surged. Within this context, plasma polymerization is emerging as a promising approach for applying degradable antibacterial coatings on various plastic films. This research therefore employs an atmospheric pressure aerosol-assisted plasma deposition technique to create polyethylene glycol (PEG)-like coatings embedding zinc oxide nanoparticles (ZnO NPs) of varying sizes on polyethylene (PE) substrates.

View Article and Find Full Text PDF

Nucleic Acids and Electrical Signals.

Rev Physiol Biochem Pharmacol

January 2025

Institute of Medical Sciences, University of Aberdeen, Aberdeen, Scotland, UK.

Nucleic acids are highly charged, and electrical forces are involved heavily in how our DNA is compacted and packaged into such a small space, how chromosomes are formed, and how DNA damage is repaired. In addition, electrical forces are crucial to the formation of non-canonical DNA structures called G-Quadruplexes which play multiple biological roles.

View Article and Find Full Text PDF

In the present study, with oregano essential oil (OEO) as the active ingredient and polyvinyl alcohol/citric acid (PVA/CA) as the composite matrix, ultraviolet (UV) responded PVA bio-active films incorporated with microcapsules, which were established by chitosan-incorporated titanium dioxide (TiO), were constructed. The UV light-triggered process changed the structure of films, including the degradation of PVA, the fracture of ester bonds and the breaking of glycosidic bonds. UV irradiation reduced the elongation at break, increased the light resistance ability, the surface hydrophobicity and the roughness, and accelerated the release of OEO in films.

View Article and Find Full Text PDF

Accurate QM/MM Molecular Dynamics for Periodic Systems in GPU4PySCF with Applications to Enzyme Catalysis.

J Chem Theory Comput

January 2025

Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States.

We present an implementation of the quantum mechanics/molecular mechanics (QM/MM) method for periodic systems using GPU accelerated QM methods, a distributed multipole formulation of the electrostatics, and a pseudobond treatment of the QM/MM boundary. We demonstrate that our method has well-controlled errors, stable self-consistent QM convergence, and energy-conserving dynamics. We further describe an application to the catalytic kinetics of chorismate mutase.

View Article and Find Full Text PDF

Eukaryotic DNA is packaged in the cell nucleus into chromatin, composed of arrays of DNA-histone protein octamer complexes, the nucleosomes. Over the past decade, it has become clear that chromatin structure in vivo is not a hierarchy of well-organized folded nucleosome fibers but displays considerable conformational variability and heterogeneity. In vitro and in vivo studies, as well as computational modeling, have revealed that attractive nucleosome-nucleosome interaction with an essential role of nucleosome stacking defines chromatin compaction.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!