Many animals have protective anatomical structures that allow for growth and flexibility; these structures contain thin seams called sutures that help the structure to absorb impacts. In this study, we parameterized the stiffness and toughness of a curved archway structure based on three geometric properties of a suture through finite element, quasi-static, three-point bending simulations. Each archway consisted of two symmetric pieces linked by a dovetail suture tab design. The three parameters included suture tab radii (1-5 mm), tangent lengths (0-20 mm), and contact angles (0-40°). In the simulations, a steel indenter was displaced 6.5 mm to induce progressive tab disengagement. Sutures with large contact angles and large tangent lengths generally led to stiffer and tougher structures. Sutures with a small tab radius exhibited the most sensitivity to the input parameters, and the smallest tab radius led to the stiffest and toughest archways. Results suggested that it was a combination of the largest number of tab repeats with the largest possible contact surface area that improved the mechanical response of the archway. The study revealed several suture geometries that hold significant promise, which can aid in the development of hemispherical 3D structures for dynamic impact applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9221269PMC
http://dx.doi.org/10.3390/biomimetics7020082DOI Listing

Publication Analysis

Top Keywords

finite element
8
mechanical response
8
suture tab
8
tangent lengths
8
contact angles
8
tab radius
8
tab
6
bio-inspired sutures
4
sutures finite
4
element analysis
4

Similar Publications

This paper presents a multiscale computational model, 'micro-to-meso-to-macro', to simulate polydopamine coated gold nanoparticles (AuNP@PDA) for assisted tumor photothermal therapy (PTT). The optical properties, mainly refractive index, of the PDA unit molecules are calculated using the density functional theory (DFT) method in this multiscale model. Subsequently, the thermodynamic properties, including thermal conductivity and heat capacity, of the PDA cells and AuNP@PDA particles are calculated using molecular dynamics (MD) simulation.

View Article and Find Full Text PDF

The novel assessment to explore the cutting performance of rotary instruments using dynamic finite element analysis with failure mode.

J Endod

December 2024

Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University and National University Hospital, 1, Chang-de St., Taipei, 100, Taiwan; National Taiwan University Hospital, National Taiwan University, No. 1, Chang-De St., Taipei City 100, Taiwan, ROC; School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, No. 100, Shih-Chuan 1st Rd., Kaohsiung City, 80708, Taiwan, ROC. Electronic address:

Introduction: The separation of nickel-titanium endodontic instruments due to excessive torque adversely affects treatment outcomes. Previous studies have analyzed torque values under static conditions and failed to accurately simulate the dynamic conditions of instruments within root canals. This study aimed to apply a novel finite element analysis (FEA) to assess the real-time dynamic performance of nickel-titanium endodontic instruments during operation in root canals.

View Article and Find Full Text PDF

Does Improved Resection Plane Coverage During Shoulder Arthroplasty Influence Proximal Humeral Bone Stress? A Comparison of Circular vs. Elliptical Humeral Heads.

J Shoulder Elbow Surg

December 2024

Department of Mechanical Engineering, Western University, London, ON, Canada; The Roth|McFarlane Hand and Upper Limb Centre, St. Joseph's Hospital, London, ON, Canada; Department of Surgery, Western University, London, ON, Canada. Electronic address:

Introduction: Stress shielding remains a concern following total shoulder arthroplasty using press-fit short humeral stems. While the effect of alterations in implant geometry, positioning, and sizing on stress shielding have been investigated, the effects of coverage of the cortical boundary of the resection plane have not yet been fully explored. The purpose of this study was to quantify the effect of improved cortical coverage using elliptical vs.

View Article and Find Full Text PDF

High-fidelity computational fluid dynamics modeling to simulate perfusion through a bone-mimicking scaffold.

Comput Biol Med

December 2024

University of Colorado Boulder, Paul M. Rady Department of Mechanical Engineering, Boulder, CO, USA; Biofrontiers Institute, University of Colorado, Boulder, CO, 80309, USA. Electronic address:

Breast cancer cells sense shear stresses in response to interstitial fluid flow in bone and induce specific biological responses. Computational fluid dynamics models have been instrumental in estimating these shear stresses to relate the cell mechanoresponse to exact mechanical signals, better informing experiment design. Most computational models greatly simplify the experimental and cell mechanical environments for ease of computation, but these simplifications may overlook complex cell-substrate mechanical interactions that significantly change shear stresses experienced by cells.

View Article and Find Full Text PDF

Tricuspid valve edge-to-edge repair simulations are highly sensitive to annular boundary conditions.

J Mech Behav Biomed Mater

December 2024

Department of Mechanical Engineering, The University of Texas at Austin, 204 E. Dean Keeton Street, Austin, TX, 78712, USA; Department of Aerospace Engineering & Engineering Mechanics, The University of Texas at Austin, 2617 Wichita Street, Austin, TX, 78712, USA; Department of Biomedical Engineering, The University of Texas at Austin, 107 W. Dean Keeton Street, Austin, TX, 78712, USA; The Oden Institute for Computational Engineering & Sciences, The University of Texas at Austin, 201 E. 24th Street, Austin, TX, 78712, USA. Electronic address:

Transcatheter edge-to-edge repair (TEER) simulations may provide insight into this novel therapeutic technology and help optimize its use. However, because of the relatively short history and technical complexity of TEER simulations, important questions remain unanswered. For example, there is no consensus on how to handle the annular boundary conditions in these simulations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!