Osteoblast-like Cell Differentiation on 3D-Printed Scaffolds Using Various Concentrations of Tetra-Polymers.

Biomimetics (Basel)

Orthodontic Section, Department of Preventive Dentistry, Faculty of Dentistry, Prince of Songkla University, Hat Yai 90112, Songkhla, Thailand.

Published: May 2022

New bone formation starts from the initial reaction between a scaffold surface and the extracellular matrix. This research aimed to evaluate the effects of various amounts of calcium, phosphate, sodium, sulfur, and chloride ions on osteoblast-like cell differentiation using tetra-polymers of amorphous calcium phosphate (ACP), calcium sulfate hemihydrate (CSH), alginic acid, and hydroxypropyl methylcellulose. Moreover, 3D-printed scaffolds were fabricated to determine the ion distribution and cell differentiation. Various proportions of ACP/CSH were prepared in ratios of 0%, 13%, 15%, 18%, 20%, and 23%. SEM was used to observe the morphology, cell spreading, and ion complements. The scaffolds were also examined for calcium ion release. The mouse osteoblast-like cell line MC3T3-E1 was cultured to monitor the osteogenic differentiation, alkaline phosphatase (ALP) activity, total protein synthesis, osteocalcin expression (OCN), and calcium deposition. All 3D-printed scaffolds exhibited staggered filaments, except for the 0% group. The amounts of calcium, phosphate, sodium, and sulfur ions increased as the amounts of ACP/CSH increased. The 18%ACP/CSH group significantly exhibited the most ALP on days 7, 14, and 21, and the most OCN on days 14 and 21. Moreover, calcium deposition and mineralization showed the highest peak after 7 days. In conclusion, the 18%ACP/CSH group is capable of promoting osteoblast-like cell differentiation on 3D-printed scaffolds.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9221135PMC
http://dx.doi.org/10.3390/biomimetics7020070DOI Listing

Publication Analysis

Top Keywords

osteoblast-like cell
16
cell differentiation
16
3d-printed scaffolds
16
calcium phosphate
12
differentiation 3d-printed
8
amounts calcium
8
phosphate sodium
8
sodium sulfur
8
calcium deposition
8
18%acp/csh group
8

Similar Publications

Hydroxyapatite (HA) is an important constituent of natural bone. The properties of HA can be enhanced with the help of various ionic substitutions in the crystal lattice of HA. Iron (Fe) is a vital element present in bones and teeth.

View Article and Find Full Text PDF

Grana Padano (GP) is an Italian hard cooked cheese characterized by a long ripening process and high protein and Ca contents. After in vitro static simulated gastrointestinal digestion, GP digest contained caseinophosphopeptides that were 6 to 24 amino acids in length, including tri-phosphorylated species incorporating the pSer-pSer-pSer-Glu-Glu cluster. Using rat ileum tissue, the digest was used to assess Ca absorption ex vivo, which showed significantly better results for the GP digest in comparison to the CaCO aqueous solution.

View Article and Find Full Text PDF

Cold-Spray Deposition of Antibacterial Molybdenum Coatings on Poly(dimethylsiloxane).

ACS Appl Bio Mater

January 2025

Department of Chemistry and Biotechnology; School of Science, Computing & Engineering Technologies, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia.

Despite their widespread utilization in biomedical applications, these synthetic materials can be susceptible to microbial contamination, potentially compromising their functionality and increasing the risk of infection in patients. In this study, molybdenum (Mo), an essential metal in biological systems, was investigated as a Mo-based cold-sprayed coating on poly(dimethylsiloxane) (PDMS) for its potential use as biocompatible and antimicrobial surfaces for biomedical applications. Various cold-spray parameters were employed in the fabrication of Mo-embedded PDMS surfaces to alter the surface structure of the substrate, Mo loading density, and embedding layer thickness.

View Article and Find Full Text PDF

Objective: This in vitro study aimed to analyze the effects of ionizing radiation on immortalized human osteoblast-like cells (SaOS-2) and further assess their cellular response in co-culture with fibroblasts. These analyses, conducted in both monoculture and co-culture, are based on two theoretical models of osteoradionecrosis - the theory of hypoxia and cellular necrosis and the theory of the radiation-induced fibroatrophic process.

Design: SaOS-2 cells were exposed to ionizing radiation and evaluated for cell viability, nitric oxide (NO) production, cellular morphology, wound healing, and gene expression related to the PI3K-AKT-mTOR pathway.

View Article and Find Full Text PDF

Differential expression of osteoblast-like cells on self-organized titanium dioxide nanotubes.

J Dent Sci

December 2024

Division for Globalization Initiative, Liaison Center for Innovative Dentistry, Tohoku University Graduate School of Dentistry, Sendai, Japan.

Background/purpose: Titanium dioxide nanotube (TNT) structures have been shown to enhance the early osseointegration of dental implants. Nevertheless, the optimal nanotube diameter for promoting osteogenesis remains unclear due to variations in cell types and manufacture of nanotubes. This study aimed to evaluate the differences in MC3T3-E1 and Saos-2 cells behavior on nanotubes of varying diameters.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!