The development of resonance phenomena-based optical biosensors has gained relevance in recent years due to the excellent optical fiber properties and progress in the research on materials and techniques that allow resonance generation. However, for lossy mode resonance (LMR)-based sensors, the optical fiber presents disadvantages, such as the need for splicing the sensor head and the complex polarization control. To avoid these issues, planar waveguides such as coverslips are easier to handle, cost-effective, and more robust structures. In this work, a microfluidic LMR-based planar waveguide platform was proposed, and its use for biosensing applications was evaluated by detecting anti-immunoglobulin G (anti-IgG). In order to generate the wavelength resonance, the sensor surface was coated with a titanium dioxide (TiO) thin-film. IgG antibodies were immobilized by covalent binding, and the detection assay was carried out by injecting anti-IgG in PBS buffer solutions from 5 to 20 μg/mL. The LMR wavelength shifted to higher values when increasing the analyte concentration, which means that the proposed system was able to detect the IgG/anti-IgG binding. The calibration curve was built from the experimental data obtained in three repetitions of the assay. In this way, a prototype of an LMR-based biosensing microfluidic platform developed on planar substrates was obtained for the first time.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9221500 | PMC |
http://dx.doi.org/10.3390/bios12060403 | DOI Listing |
Entropy (Basel)
November 2024
Faculty of Electrical Engineering and Computer Science, University of Maribor, Koroška cesta 46, SI-2000 Maribor, Slovenia.
After a boom that coincided with the advent of the internet, digital cameras, digital video and audio storage and playback devices, the research on data compression has rested on its laurels for a quarter of a century. Domain-dependent lossy algorithms of the time, such as JPEG, AVC, MP3 and others, achieved remarkable compression ratios and encoding and decoding speeds with acceptable data quality, which has kept them in common use to this day. However, recent computing paradigms such as cloud computing, edge computing, the Internet of Things (IoT), and digital preservation have gradually posed new challenges, and, as a consequence, development trends in data compression are focusing on concepts that were not previously in the spotlight.
View Article and Find Full Text PDFSensors (Basel)
November 2024
Mechanical and Systems Research Laboratory, Industrial Technology Research Institute, Hsinchu 310401, Taiwan.
We present a high-sensitivity fiber optic soil moisture sensor based on side-polished multimode fibers and lossy mode resonance (LMR). The multimode fibers (MMFs), after side-polishing to form a D-shaped structure, are coated with a single-layer SnO thin film by electron beam evaporation with ion-assisted deposition technology. The LMR effect can be obtained when the refractive index of the thin film is positive and greater than its extinction coefficient and the real part of the external medium permittivity.
View Article and Find Full Text PDFBiosens Bioelectron
March 2025
School of Precision Instrument and Opto-electronics Engineering, Tianjin University, Tianjin, 300072, China.
Biomarker detection has emerged as an essential complementary approach for early-stage screening of tumors. Conventional methods are constrained by bulky systems, cumbersome operation steps, and low detection accuracy. Here, we demonstrate a dual-resonance optimally configured lossy mode resonance (LMR) immunoprobe for detecting prostate-specific antigen (PSA), a biomarker for prostate cancer (PCa).
View Article and Find Full Text PDFNanophotonics
September 2024
Department of Electrical Engineering & Columbia Nano Initiative, Columbia University, New York, NY, USA.
The performance of all active photonic devices today is greatly limited by loss. Here, we show that one can engineer a low loss path in a metal-clad lossy multi-mode waveguide while simultaneously achieving high-performance active photonic devices. We leverage non-Hermitian systems operating beyond the exceptional point to enable the redistribution of losses in a multi-mode photonic waveguide.
View Article and Find Full Text PDFNanophotonics
March 2024
School of Electrical Engineering and Computer Science, Department of Semiconductor Engineering, and Artificial Intelligence (AI) Graduate School, Gwangju Institute of Science and Technology (GIST), Cheomdangwagi-ro 123, Buk-gu, Gwangju 61005, Republic of Korea.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!