Traditional qPCR instrument is combined with CMOS and a personal computer, and a photoelectric feedback automatic fluorescence detection system is designed to realize quantitative real-time PCR. The key to reaction efficiency lies in how to ensure that the temperature of the detection reagent completely matches the set temperature. However, for most traditional real-time fluorescent PCR systems, the temperature cycling is controlled by detecting the temperature of the heating well plate. It cannot directly measure the temperature in the reaction reagent PCR tube, which will cause the deviation in the actual temperature of the reagent to be as expected. Therefore, in this paper, we raise a method of directly detecting the temperature in the reaction tube of the reagent during the temperature cycling is adopted. According to the deviation from the expected value, the set temperature of the PCR instrument is adjusted to make the actual temperature of the reagent closer to the expected value. Through this method, we also realized the temperature calibration and optimization of the TEC circulation system we built. Experiments show that this low-cost, portable real-time quantitative PCR system can detect and analyze pathogens in situ.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9220086PMC
http://dx.doi.org/10.3390/bioengineering9060237DOI Listing

Publication Analysis

Top Keywords

temperature
12
set temperature
8
temperature cycling
8
detecting temperature
8
temperature reaction
8
actual temperature
8
temperature reagent
8
pcr
5
reagent
5
optimized thermal
4

Similar Publications

Background: Pycnanthus angolensis (Welw) Warb., Myristicaceae, is used extensively in ethnomedicine. Numerous health benefits have being ascribed to the use of different parts of P.

View Article and Find Full Text PDF

We report a new NMR method for treating two-site chemical exchange involving half-integer quadrupolar nuclei in a solution. The new method was experimentally verified with extensive Na ( = 3/2), K ( = 3/2), and Rb ( = 3/2) NMR results from alkali metal ions (Na, K, and Rb) in a solution over a wide range of molecular tumbling conditions. In the fast-motion limit, all allowed single-quantum NMR transitions for a particular quadrupolar nucleus are degenerate giving rise to one Lorentzian signal.

View Article and Find Full Text PDF

Ultrathin indium oxide films show great potential as channel materials of complementary metal oxide semiconductor back-end-of-line transistors due to their high carrier mobility, smooth surface, and low leakage current. However, it has severe thermal stability problems (unstable and negative threshold voltage shifts at high temperatures). In this paper, we clarified how the improved crystallinity of indium oxide by using ultrahigh-temperature rapid thermal O annealing could reduce donor-like defects and suppress thermal-induced defects, drastically enhancing thermal stability.

View Article and Find Full Text PDF

Background: 65% of persons with dementia (PWD) suffer from disturbed sleeping patterns and 28% experience vision related falls. Improved lighting has been shown in numerous studies since the 1980s to mitigate these effects.

Method: Computer code was written to optimize the spectra and intensity of light for vision and non-vision purposes over a 24-hour cycle based on off-the-shelf LEDs.

View Article and Find Full Text PDF

This report documents complications in false pilchard Harengula clupeola and scad Decapterus macarellus associated with a salinomycin (60 mg kg-1) and amprolium (100 mg kg-1) gel feed treatment, along with prolonged temperature increase, for an Enteromyxum leei outbreak in a salt water, mixed species, public aquarium exhibit. Shortly after administration, a mass mortality event ensued where hundreds of false pilchards and a few scad died. Medicated gel feed was noted within the gastrointestinal tracts of all affected fish.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!