Bacterial mutation and genetic diversity in aquaculture have led to increasing phenotypic variances, which can weaken or invalidate strategies for controlling diseases. However, few studies have monitored the degree of mutation in fish bacterial pathogens caused by environmental pressure within a short period. In this study, transcriptomic sequences from Edwardsiella piscicida, Vibrio harveyi and Streptococcus parauberis under stressed environments were used for investigating the emergence of variants. In detail, a sub-inhibitory concentration of formalin and phenol for E. piscicida, sea water at 30°C for V. harveyi and flounder serum for S. parauberis were used as stressed environments, and significant single-nucleotide polymorphisms (SNPs) and/or mutation sites were investigated after culture in the ordinary liquid media (control) and the stressed environment through a genome-wide association study. As results, several SNPs or mutations during incubation were observed under different environments in E. piscicida and/or V. harveyi in the genes relevant to flagella, fimbria type 3 secretion systems, and outer and inner membranes that have been directly exposed to external environments. In particular, given that flagella and fimbriae are considered important factors in differentiating the serotypes in some bacterial pathogens, it can be speculated that different environmental pressures are the source of phenotypic or serotypic differentiation from the same origin. On the other hands, S. parauberis did not exhibit notable changes for 4 h when inoculated in the serum from olive flounder. The results presented in this study provide examples of possible molecular evolution in pathogens relevant to the aquaculture industry as a response to different environmental pressure.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9541752 | PMC |
http://dx.doi.org/10.1111/jfd.13668 | DOI Listing |
Vet Sci
August 2024
Grupo de Seguridad y Calidad de los Alimentos por Bacterias Lácticas, Bacteriocinas y Probióticos (Grupo SEGABALBP), Sección Departamental de Nutrición y Ciencia de los Alimentos (Nutrición, Bromatología, Higiene y Seguridad Alimentaria), Facultad de Veterinaria, Universidad Complutense de Madrid, Avda. Puerta de Hierro, s/n, 28040 Madrid, Spain.
Frequently, diseases in aquaculture have been fought indiscriminately with the use of antibiotics, which has led to the development and dissemination of (multiple) antibiotic resistances in bacteria. Consequently, it is necessary to look for alternative and complementary approaches to chemotheraphy that are safe for humans, animals, and the environment, such as the use of probiotics in fish farming. The objective of this work was the Whole-Genome Sequencing (WGS) and bioinformatic and functional analyses of MDI13 and MEI5, two LAB strains isolated from the gut of commercial European hakes (, L.
View Article and Find Full Text PDFJ Fish Dis
September 2022
Pathogens and Disease Transfer, Institute of Marine Research, Bergen, Norway.
Bacterial mutation and genetic diversity in aquaculture have led to increasing phenotypic variances, which can weaken or invalidate strategies for controlling diseases. However, few studies have monitored the degree of mutation in fish bacterial pathogens caused by environmental pressure within a short period. In this study, transcriptomic sequences from Edwardsiella piscicida, Vibrio harveyi and Streptococcus parauberis under stressed environments were used for investigating the emergence of variants.
View Article and Find Full Text PDFFish Shellfish Immunol
June 2013
Research Institute of Life Science, Gyeongsang National University, Jinju, South Korea.
Heat shock proteins (HSPs) have been observed in cells exposed to a variety of stresses, including infectious pathogens. This study used a label-free, quantitative proteomic approach and transcriptional gene expression analysis to investigate infection-related HSP proteins and their encoding genes in whole kidneys from olive flounder (Paralichthys olivaceus). During Streptococcus parauberis infection in the flounder, the genes encoding Hsp10, Hsp40A4, Hsp40B6, Hsp40B11, Hsp60, Hsp70, glucose regulated protein 78 (Grp78), Hsp90α, Hsp90β and Grp94 were induced, and the protein levels of Hsp60, Hsp70, Hsp90α, Hsp90β and Grp94 were differentially regulated over time.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!