Diabetic wounds are one of the most common health problems worldwide, enhancing the demand for new management strategies. Nanotechnology, as a developing subject in diabetic wound healing, is proving to be a promising and effective tool in treatment and care. It is, therefore, necessary to ascertain the available and distinct nanosystems and evaluate their performance when topically applied to the injury site, especially in diabetic wound healing. Several active ingredients, including bioactive ingredients, growth factors, mesenchymal stem cells, nucleic acids, and drugs, benefit from improved properties when loaded into nanosystems. Given the risk of problems associated with systemic administration, the topical application should be considered, provided stability and efficacy are assured. After nanoencapsulation, active ingredients-loaded nanosystems have been showing remarkable features of biocompatibility, healing process hastening, angiogenesis, and extracellular matrix compounds synthesis stimulation, contributing to a decrease in wound inflammation. Despite limitations, nanotechnology has attracted widespread attention in the scientific community and seems to be a valuable technological ally in the treatment and dressing of diabetic wounds. The use of nanotechnology in topical applications enables efficient delivery of the active ingredients to the specific skin site, increasing their bioavailability, stability, and half-life time, without compromising their safety.

Download full-text PDF

Source
http://dx.doi.org/10.1080/1061186X.2022.2092624DOI Listing

Publication Analysis

Top Keywords

diabetic wounds
12
diabetic wound
8
wound healing
8
active ingredients
8
diabetic
5
application nanotechnology
4
nanotechnology management
4
management treatment
4
treatment diabetic
4
wounds diabetic
4

Similar Publications

Background: Hyperbaric oxygen therapy (HBOT) is a treatment in which oxygen-enriched air (up to 100%) is administered to patients in a chamber at a pressure above one atmosphere absolute and is approved for the treatment of T2D ischemic wounds. Type 2 diabetes (T2D) is a risk factor for dementia. Ischemia due to vascular pathology is hypothesized to be an underlying mechanism for this association.

View Article and Find Full Text PDF

Implications of Biomaterials for Chronic Wounds.

Mini Rev Med Chem

January 2025

University of Bucharest, Faculty of Biology, DAFAB Department, Splaiul Independentei 91-95, Bucharest, R-050095, Romania.

The use of biomaterials in treating and managing chronic wounds represents a significant challenge in global healthcare due to the complex nature of these wounds, which are slow to heal and can lead to complications such as frequent infections and diminished quality of life for patients. Chronic wounds, which can arise from conditions like diabetes, poor circulation, and pressure sores, pose distinct challenges in wound care, necessitating the development of specialized dressings. The pathophysiology of chronic wounds is thoroughly examined in this article, with particular attention paid to the cellular and molecular defects at work and the therapeutic guidelines.

View Article and Find Full Text PDF

: Diabetes mellitus (DM) is associated with worse surgical outcomes, and is a risk factor for bladder cancer and subsequent oncological outcomes. This study evaluated outcomes robot-assisted radical cystectomy (RARC) compared to open radical cystectomy (ORC) in patients with DM. : Data of adults ≥ 18 years old with DM who underwent radical cystectomy were extracted from the United States National Inpatient Sample database 2005-2018.

View Article and Find Full Text PDF

Assessment of Risk Factors Leading to Amputation Among Diabetic Septic Foot Patients in Khartoum, Sudan.

Cureus

December 2024

Trauma and Orthopaedics, Gateshead Health National Health Services (NHS) Foundation Trust, Gateshead, GBR.

Introduction  Diabetes is a rapidly growing global health concern, with the World Health Organization (WHO) estimating that 300 million adults will have diabetes by 2025. This chronic condition is associated with complications, including nephropathy, retinopathy, neuropathy, cardiovascular disease, and diabetic foot ulcers (DFUs), which can lead to amputation. Diabetic septic foot (DSF), a severe form of diabetic foot disease, is defined by the WHO as the presence of infection, ulceration, or tissue destruction in the lower limb, often accompanied by neurological abnormalities, peripheral vascular disease, and metabolic complications of diabetes.

View Article and Find Full Text PDF

Infections caused by persistent, drug-resistant bacteria pose significant challenges in inflammation treatment, often leading to severe morbidity and mortality. Herein, the photosensitizer rhodamine derivatives are selected as the light-trapping dye and the electron-rich substituent N-nitrosoaminophen as the nitric oxide (NO)-releasing component to develop a multifunctional (deep) red-light activatable NO photocage/photodynamic prodrug for efficient treatment of wounds and diabetic foot infections. The prodrug, RhB-NO-2 integrates antimicrobial photodynamic therapy (aPDT), NO sterilization, and NO-mediated anti-inflammatory properties within a small organic molecule and is capable of releasing NO and generating Reactive oxygen species (ROS) when exposed to (deep) red laser (660 nm).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!