Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Diverse microscopic ionic dynamics help mediate the ability of a biological neural network to handle complex tasks with low energy consumption. Thus, rich internal ionic dynamics in memristors based on transition metal oxide are expected to provide a unique and useful platform for implementing energy-efficient neuromorphic computing. To this end, a titanium oxide (TiO )-based interface-type dynamic memristor and an niobium oxide (NbO )-based Mott memristor are integrated as an artificial dendrite and spike-firing soma, respectively, to construct a dendritic neuron unit for realizing high-efficiency spatial-temporal information processing. Further, a dendritic neural network is hardware-implemented for spatial-temporal information processing to highlight the computational advantages achieved by incorporating dendritic functions in the network. Human motion recognition is demonstrated using the Nanyang Technological University-Red Green Blue (NTU-RGB) dataset as a benchmark spatial-temporal task; it shows a nearly 20% improvement in accuracy for the memristors-based hardware incorporating dendrites and a 1000× advantage in power efficiency compared to that of the graphics processing unit (GPU). The dendritic neuron developed in this study can be considered a critical building block for implementing more bio-plausible neural networks that can manage complex spatial-temporal tasks with high efficiency.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/adma.202203684 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!