This Scientific report provides an update of the spp. host plant database, aiming to provide information and scientific support to risk assessors, risk managers and researchers dealing with spp. Upon a mandate of the European Commission, EFSA created and regularly updated a database of host plant species of spp. The current mandate covers the period 2021-2026. This report is related to the sixth version of the database published in Zenodo in the EFSA Knowledge Junction community, covering literature published from 1 July 2021 up to 31 December 2021, and recent Europhyt outbreak notifications. Informative data have been extracted from 29 selected publications. Eleven new host plants were identified and added to the database: six plant species naturally infected by subsp. of in the EU (France, Italy and Portugal) and five plant species artificially infected by different subspecies (, , and ). No additional data were retrieved for . New information on the tolerant/resistant response of plant species to infection were added, while no new STs have been identified worldwide compared to the previous update published in January 2022. The overall number of spp. host plants determined with at least two different detection methods or positive with one method (between: sequencing, pure culture isolation) reaches now 412 plant species, 190 genera and 68 families. Such numbers rise to 664 plant species, 299 genera and 88 families if considered regardless of the detection methods applied.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9198695PMC
http://dx.doi.org/10.2903/j.efsa.2022.7356DOI Listing

Publication Analysis

Top Keywords

plant species
24
spp host
12
host plant
12
update spp
8
plant
8
plant database
8
december 2021
8
host plants
8
detection methods
8
genera families
8

Similar Publications

Accelerating stomatal kinetics through synthetic optogenetics and mutations that enhance guard cell K+ flux has proven a viable strategy to improve water use efficiency and biomass production. Stomata of the model C4 species Gynandropsis gynandra, a relative of the C3 plant Arabidopsis thaliana, are similarly fast to open and close. We identified and cloned the guard cell rectifying outward K+ channel (GROK) of Gynandropsis and showed that GROK is preferentially expressed in stomatal guard cells.

View Article and Find Full Text PDF

Three endophytic strains, Phomopsis sp., Fusarium proliferatum, and Tinctoporellus epimiltinus, isolated from various plants in the rainforest of the Philippines, were investigated regarding their ability to repress growth of the pathogenic fungus Colletotrichum musae on banana fruits causing anthracnose disease. An in vitro plate-to-plate assay and an in vivo sealed box assay were conducted, using commercial versus natural potato dextrose medium (PDA).

View Article and Find Full Text PDF

Tracking biodiversity across biomes over space and time has emerged as an imperative in unified global efforts to manage our living planet for a sustainable future for humanity. We harness the National Ecological Observatory Network to develop routines using airborne spectroscopic imagery to predict multiple dimensions of plant biodiversity at continental scale across biomes in the US. Our findings show strong and positive associations between diversity metrics based on spectral species and ground-based plant species richness and other dimensions of plant diversity, whereas metrics based on distance matrices did not.

View Article and Find Full Text PDF

Understanding how land use affects temporal stability is crucial to preserve biodiversity and ecosystem functions. Yet, the mechanistic links between land-use intensity and stability-driving mechanisms remain unclear, with functional traits likely playing a key role. Using 13 years of data from 300 sites in Germany, we tested whether and how trait-based community features mediate the effect of land-use intensity on acknowledged stability drivers (compensatory dynamics, portfolio effect, and dominant species variability), within and across plant and arthropod communities.

View Article and Find Full Text PDF

Thrips tabaci is the main thrips species affecting onion and related species. It is a cryptic species complex comprising three phylogenetic groups characterized by different reproductive modes (thelytoky or arrhenotoky) and host plant specialization. Thrips tabaci populations vary widely in genetic diversity, raising questions about the factor(s) that drive this diversity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!