The freshwater polyp () harbors endosymbiotic algae in addition to a species-specific microbiome. The molecular basis of the symbiosis between and has been characterized to be metabolic in nature. Here, we studied the interaction between the extracellularly located microbiota and the algal photobiont, which resides in 's endodermal epithelium, with main focus on bacterium. We aimed at evaluating the influence of the symbiotic algae on microbial colonization and in shaping the host microbiome. We report that the microbiome composition of symbiotic and aposymbiotic (algae free) is significantly different and dominated by in aposymbiotic animals. Co-cultivation of these animals resulted in horizontal transmission of bacteria from aposymbiotic to symbiotic animals. Acquisition of this bacterium increased the release of algae into ambient water. From there, algae could subsequently be taken up again by the aposymbiotic animals. The presence of algal symbionts had negative impact on and resulted in a decrease of the relative abundance of this bacterium. Prolonged co-cultivation ultimately resulted in the disappearance of the bacterium from the tissue. Our observations suggest an important role of the photobiont in controlling an invasive species in a metacommunity and, thereby, shaping the microbiome.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9207534 | PMC |
http://dx.doi.org/10.3389/fmicb.2022.869666 | DOI Listing |
BMC Genomics
January 2025
Sesoko Marine Station, Tropical Biosphere Research Center, University of the Ryukyus, 3422 Sesoko, Motobu, Okinawa, 905-0227, Japan.
Background: Rising seawater temperatures increasingly threaten coral reefs. The ability of coral larvae to withstand heat is crucial for maintaining reef ecosystems. Although several studies have investigated coral larvae's genetic responses to thermal stress, most relied on pooled sample sequencing, which provides population-level insights but may mask individual genotype variability.
View Article and Find Full Text PDFMicroorganisms
December 2024
Research Center for Thermotolerant Microbial Resources, Yamaguchi University, Yoshida 1677-1, Yamaguchi 753-8512, Yamaguchi, Japan.
, a ciliated protist, forms a symbiotic relationship with the green alga . This endosymbiotic association is a model system for studying the establishment of secondary symbiosis and interactions between the symbiont and its host organisms. Symbiotic algae reside in specialized compartments called perialgal vacuoles (PVs) within the host cytoplasm, which protect them from digestion by host lysosomal fusion.
View Article and Find Full Text PDFWorld J Microbiol Biotechnol
January 2025
Institute of Biotechnology, College of Natural Sciences, University of Rzeszów, Pigonia 1 St, Rzeszow, 35-310, Poland.
Phthalic acid esters are widely used worldwide as plasticizers. The high consumption of phthalates in China makes it the world's largest plasticizer market. The lack of phthalic acid ester's chemical bonding with the polymer matrix facilitates their detachment from plastic products and subsequent release into the environment and causes serious threats to the health of living organisms.
View Article and Find Full Text PDFEnviron Technol
December 2024
Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam.
This study introduces a novel Revolving Algae Biofilm reactor for synthetic wastewater treatment, examining the influence of various biomass retention times (BRTs) on nutrient removal performance. The study reveals complex interactions between microalgae and bacteria, emphasizing their symbiotic functions in oxygen provision, nutrient absorption, and floc creation. This research contributes to the advancement of sustainable wastewater treatment methods, showing promise for large-scale nutrient removal in industrial settings.
View Article and Find Full Text PDFHeliyon
December 2024
Department of Applied and Environmental Chemistry, University of Szeged, Szeged, Hungary.
Currently, the increasing use of nickel metal-organic frameworks (Ni-MOF) and nickel oxide nanoparticles (NiO NPs) has raised concerns regarding their potential environmental impact on wastewater treatment systems. Herein, the responses of aerobic granular sludge (AGS) and algal-bacterial aerobic granular sludge (AB-AGS) to Ni-MOF and NiO NPs were investigated. The results showed that Ni-MOF concentrations of 50, 100, and 200 mg/L significantly reduced nutrient removal in both systems, particularly affecting ammonia, nitrite, and phosphorus removal, while denitrification processes remained stable.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!