Considering the Role of Extracellular Matrix Molecules, in Particular Reelin, in Granule Cell Dispersion Related to Temporal Lobe Epilepsy.

Front Cell Dev Biol

Institute for Anatomy and Clinical Morphology, School of Medicine, Faculty of Health, Witten/ Herdecke University, Witten, Germany.

Published: June 2022

The extracellular matrix (ECM) of the nervous system can be considered as a dynamically adaptable compartment between neuronal cells, in particular neurons and glial cells, that participates in physiological functions of the nervous system. It is mainly composed of carbohydrates and proteins that are secreted by the different kinds of cell types found in the nervous system, in particular neurons and glial cells, but also other cell types, such as pericytes of capillaries, ependymocytes and meningeal cells. ECM molecules participate in developmental processes, synaptic plasticity, neurodegeneration and regenerative processes. As an example, the ECM of the hippocampal formation is involved in degenerative and adaptive processes related to epilepsy. The role of various components of the ECM has been explored extensively. In particular, the ECM protein reelin, well known for orchestrating the formation of neuronal layer formation in the cerebral cortex, is also considered as a player involved in the occurrence of postnatal granule cell dispersion (GCD), a morphologically peculiar feature frequently observed in hippocampal tissue from epileptic patients. Possible causes and consequences of GCD have been studied in various and models. The present review discusses different interpretations of GCD and different views on the role of ECM protein reelin in the formation of this morphological peculiarity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9207388PMC
http://dx.doi.org/10.3389/fcell.2022.917575DOI Listing

Publication Analysis

Top Keywords

nervous system
12
extracellular matrix
8
granule cell
8
cell dispersion
8
neurons glial
8
glial cells
8
cell types
8
ecm protein
8
protein reelin
8
ecm
6

Similar Publications

Background/objectives: Anaplastic large cell lymphomas (ALCLs) present unique challenges due to their clinical and genetic heterogeneity. This study investigated the clinical characteristics of children diagnosed with systemic ALCL.

Methods: Retrospective data from 14 pediatric patients diagnosed with systemic ALCL at Valme University Hospital were studied.

View Article and Find Full Text PDF

Gliomas are a heterogeneous type of central nervous system tumor. The etiology of glioma formation remains elusive, with approximately 5% of gliomas being familial, underscoring the significance of understanding genetic susceptibility in glioma development. In this study, a dual germline PTCH2 mutation [Ser391*, Leu104Pro] was identified in a family with a history of glioma, and sequencing data from WES/SimcereDx Neuro-Onco 360 including 910 Chinese patients with glioma and 1666 patients with solid tumors were analyzed.

View Article and Find Full Text PDF

Purpose: Glioma is the most prevalent tumor of the central nervous system. The poor clinical outcomes and limited therapeutic efficacy underscore the urgent need for early diagnosis and an optimized prognostic approach for glioma. Therefore, the aim of this study was to identify sensitive biomarkers for glioma.

View Article and Find Full Text PDF

In vitro studies have shown that a neuron's electroresponsive properties can predispose it to oscillate at specific frequencies. In contrast, network activity in vivo can entrain neurons to rhythms that their biophysical properties do not predispose them to favor. However, there is limited information on the comparative frequency profile of unit entrainment across brain regions.

View Article and Find Full Text PDF

Background: Neuromyelitis optica spectrum disorder (NMOSD) is a relapsing central nervous system disease most commonly associated with aquaporin-4 antibodies (AQP4-Ab) and Myelin oligodendrocyte glycoprotein (MOG) antibodies. These demyelinating disorders influence cortical excitability, which has been studied using advanced imaging techniques and transcranial magnetic stimulation (TMS) in our study.

Methods: This is a prospective study of 30 subjects.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!