Zeolite-polymer composite membranes have become promising and effective materials for the pervaporative separation of liquids, especially for isomeric mixtures. In this paper, silicalite-1/PDMS composite membranes have been used to investigate the separation of dichlorobenzene (DCB) isomers pervaporation for the first time. Silicalite-1 zeolites modified by the silane coupling agent, NH-CH-Si(OCH), have been incorporated into polydimethylsiloxane (PDMS). Then, the silicalite-1/PDMS composite membranes have been successfully prepared on porous polyvinylidene fluoride (PVDF) supports. The morphology and structure of the silicalite-1 zeolites and silicalite-1/PDMS composite membranes have been characterized by XRD, FTIR, SEM and BET techniques. The results show that the modified silicalite-1 zeolite particles have smaller pore sizes dispersed more uniformly in the active layers of the silicalite-1/PDMS composite membranes and present fewer aggregation and pinholes formed by the accumulation of zeolite particles. The silicalite-1/PDMS composite membranes are all dense and continuous with good homogeneity. To evaluate the pervaporative separation performance of the DCB isomers, the unmodified and modified silicalite-1/PDMS composite membranes have been further tested in single-isomer and binary-isomer systems at 60 °C. The modified silicalite-1/PDMS composite membranes present higher DCB isomer separation factors. The separation factors of the modified silicalite-1/PDMS composite membranes in the binary-isomer systems for -/-DCB and -/-DCB are 3.53 and 5.63, respectively. The permeate flux of -DCB through the modified silicalite-1/PDMS composite membranes in the -/-DCB binary-isomer system is 116.7 g m h and in the -/-DCB binary-isomer system, it is 93.5 g m h. The result provides a new approach towards the pervaporative separation of DCB isomers from their mixture for future industrialization applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9150433PMC
http://dx.doi.org/10.1039/d2ra01950gDOI Listing

Publication Analysis

Top Keywords

composite membranes
44
silicalite-1/pdms composite
36
modified silicalite-1/pdms
16
pervaporative separation
12
dcb isomers
12
composite
11
membranes
11
silicalite-1/pdms
9
separation dichlorobenzene
8
isomers pervaporation
8

Similar Publications

Unlocking Peak Efficiency in Anion-Exchange Membrane Electrolysis with Iridium-Infused Ni/NiP Heterojunction Electrocatalysts.

Small

January 2025

Advanced Materials Institute of Nano Convergence Engineering (BK21 FOUR), Dept. of Nano Convergence Engineering, Jeonbuk National University, Jeonju, Jeonbuk, 54896, Republic of Korea.

Developing cost-effective, highly efficient, and durable bifunctional electrocatalysts for water electrolysis remains a significant challenge. Nickel-based materials have shown promise as catalysts, but their efficiency in alkaline electrolytes is still lacking. Fascinatingly, Mott-Schottky catalysts can fine-tune electron density at interfaces, boosting intermediate adsorption and facilitating desorption to reduce the energy barrier.

View Article and Find Full Text PDF

Lysosome-targeting chimeras (LYTACs) have recently emerged as a promising therapeutic strategy for degrading extracellular and membrane-associated pathogenic proteins by hijacking lysosome-targeting receptors. However, the antitumor performance of LYTAC is limited by its insufficient tumor accumulation and nonspecific activation. Additionally, the synergistic effects of LYTACs and other therapeutic modalities are crucial.

View Article and Find Full Text PDF

A new alkaliphilic strain of a purple sulphur bacterium designated as Um2 (=KCTC 25734=VKM B-3893=UQM 41073) with bacteriochlorophyll and internal photosynthetic membranes of tubular type was isolated from the Umhei hydrothermal system (40 °C, pH 9.3 and salinity 0.42 g l) located in the Baikal rift zone (Russia).

View Article and Find Full Text PDF

PdNi Trimer Sites Drive Efficient and Durable Hydrogen Oxidation in Alkaline Media.

J Am Chem Soc

January 2025

Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.

Anion-exchange membrane fuel cell (AEMFC) is a cost-effective hydrogen-to-electricity conversion technology under a zero-emission scenario. However, the sluggish kinetics of the anodic hydrogen oxidation reaction (HOR) impedes the commercial implementation of AEMFCs. Here, we develop a Pd single-atom-embedded NiN catalyst (Pd/NiN) with unconventional PdNi trimer sites to drive efficient and durable HOR in alkaline media.

View Article and Find Full Text PDF

The widespread utilization of titanium oxide nanoparticles (TiONPs) in various industrial applications has raised concerns about their potential ecological risks in marine environment. Assessing the toxicity of TiONPs on primary producers is essential to understand their impact on marine ecosystem. This study investigates the acute toxicity effect of TiONPs on COR-A3 cells, focusing on structural and physiological changes that can compromise algal viability and ecological function.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!