Microvia filling by copper electroplating was performed using plating solution with 1-(4-hydroxyphenyl)-2-tetrazole-5-thione (HPTT) as the leveler. Galvanostatic Measurements (GMs), Linear Sweep Voltammetry (LSV) and Electrochemical Impedance Spectroscopy (EIS) tests were carried out to investigate the electrochemical behaviors of HPTT and its synergistic effect with other additives, in comparison with 1-phenyltetrazole-5-thione (PMT). GMs showed a convection-dependent interaction between PEP and HPTT. LSV and EIS tests indicated both HPTT and PMT enhanced the inhibition effect of PEP, and the synergistic effect of HPTT and PEP was stronger than that of PMT. Cross-section images illustrated the filling rate of the microvia with a 150 μm diameter and a 75 μm depth was 95.6% in 60 minutes with HPTT as the leveler. Frontier Molecular Orbitals (FMO) and Electrostatic Potential (ESP) of HPTT and PMT using quantum chemical calculations predicted the reaction sites for electrophilic and nucleophilic attack. Quantum chemical calculations suggested that HPTT is easier than PMT to bond to a copper surface and PEP.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9152711PMC
http://dx.doi.org/10.1039/d2ra02274eDOI Listing

Publication Analysis

Top Keywords

copper electroplating
8
hptt
8
hptt leveler
8
eis tests
8
hptt pmt
8
quantum chemical
8
chemical calculations
8
pmt
5
1-4-hydroxyphenyl-2-tetrazole-5-thione leveler
4
leveler acid
4

Similar Publications

Decoding the suppressing effects of Pluronic triblock copolymers on copper electrodeposition.

J Colloid Interface Sci

April 2025

Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, Fudan University, Shanghai, China. Electronic address:

Triblock Pluronics of polyoxyethylene (PEO) and polyoxypropylene (PPO) are identified as competent suppressors for copper (Cu) electroplating in advanced electronics manufacturing. However, the specific interfacial roles of PEO and PPO blocks in Pluronic suppressors, are not yet fully understood, which is crucial for the rational design of effective suppressors. Herein, the influences of composition and block arrangement of such Pluronics on the inhibition against Cu plating are systematically investigated.

View Article and Find Full Text PDF

Implants aim to restore skeletal dysfunction associated with ageing and trauma, yet infection and ineffective immune responses can lead to failure. This project characterized the microbiological and host cell responses to titanium alloy with or without electroplated metallic copper. Bacterial viability counting and scanning electron microscopy quantified and visualized the direct and indirect bactericidal effects of the Cu-electroplated titanium (Cu-Ep-Ti) against two different Staphylococcus aureus strains.

View Article and Find Full Text PDF

Electroplating sludge (ES) is a hazardous waste, because it contains heavy metals. It poses severe environmental and health risk if not properly disposed. This study proposed a combined pyro-metallurgical process to separate and recover copper, nickel, chromium and iron from it.

View Article and Find Full Text PDF

Cyclic voltammetry (CV) can be applied as a reliable method for the determination of chloride ions in a range from several to a couple hundred (about 200) ppm. Since the standard potential of chloride ion/gaseous chlorine is 1.36 V vs.

View Article and Find Full Text PDF

As a hot issue, the scientific and effective separation and extraction of heavy metal ions from complex industrial effluent deserves wide investigation. Copper is an important valuable heavy metal in industrial wastewater. Selective extraction of copper ion (Cu) from effluent not only alleviates the shortage of resources, but also has economic and social benefits.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!