Recordings from resting-state functional magnetic resonance imaging (rs-fMRI) reflect the influence of pathways between brain areas. A wide range of methods have been proposed to measure this functional connectivity (FC), but the lack of "ground truth" has made it difficult to systematically validate them. Most measures of FC produce connectivity estimates that are symmetrical between brain areas. Differential covariance (dCov) is an algorithm for analyzing FC with directed graph edges. When we applied dCov to rs-fMRI recordings from the human connectome project (HCP) and anesthetized mice, dCov-FC accurately identified strong cortical connections from diffusion magnetic resonance imaging (dMRI) in individual humans and viral tract tracing in mice. In addition, those HCP subjects whose dCov-FCs were more integrated, as assessed by a graph-theoretic measure, tended to have shorter reaction times in several behavioral tests. Thus, dCov-FC was able to identify anatomically verified connectivity that yielded measures of brain integration significantly correlated with behavior.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9207998PMC
http://dx.doi.org/10.1162/netn_a_00239DOI Listing

Publication Analysis

Top Keywords

functional connectivity
8
differential covariance
8
reaction times
8
magnetic resonance
8
resonance imaging
8
brain areas
8
connectivity fmri
4
fmri differential
4
covariance predicts
4
predicts structural
4

Similar Publications

Background And Objective: Inferring large-scale brain networks from functional magnetic resonance imaging (fMRI) provides more detailed and richer connectivity information, which is critical for gaining insight into brain structure and function and for predicting clinical phenotypes. However, as the number of network nodes increases, most existing methods suffer from the following limitations: (1) Traditional shallow models often struggle to estimate large-scale brain networks. (2) Existing deep graph structure learning models rely on downstream tasks and labels.

View Article and Find Full Text PDF

The glucagon-like peptide-1 receptor (GLP-1R) plays an important role in regulating insulin secretion and reducing body weight, making it a prominent target in the treatment of type 2 diabetes and obesity. Extensive research on GLP-1R signaling has provided insights into the connection between receptor function and physiological outcomes, such as the correlation between Gs signaling and insulin secretion, yet the exact mechanisms regulating signaling remain unclear. Here, we explore the internalization pathway of GLP-1R, which is crucial for controlling insulin release and maintaining pancreatic beta-cell function.

View Article and Find Full Text PDF

Background Aims: Extracellular vesicles (EVs) have gained traction as potential cell-free therapeutic candidates. Development of purification methods that are scalable and robust is a major focus of EV research. Yet there is still little in the literature that evaluates purification methods against potency of the EV product.

View Article and Find Full Text PDF

Migrasome formation is initiated preferentially in tubular junctions by membrane tension.

Biophys J

January 2025

Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Center for Physics and Chemistry of Living Systems, Tel Aviv University, Tel Aviv, Israel. Electronic address:

Migrasomes, the vesicle-like membrane micro-structures, arise on the retraction fibers (RFs), the branched nano-tubules pulled out of cell plasma membranes during cell migration and shaped by membrane tension. Migrasomes form in two steps: a local RF bulging is followed by a protein-dependent stabilization of the emerging spherical bulge. Here we addressed theoretically and experimentally the previously unexplored mechanism of bulging of membrane tubular systems.

View Article and Find Full Text PDF

Previous studies highlighting the pivotal function of the S100A8 protein have shown that inflammation and vascular endothelial harm play a major role in deep vein thrombosis (DVT) development, as evidenced by earlier studies highlighting the pivotal function of the S100 calcium-binding protein A8 (S100A8). Therefore, we aimed to establish a connection between S100A8 and DVT and investigate the role of S100A8 in DVT development. Blood specimens were taken from 23 patients with DVT and 31 controls.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!