Cerebral ischemic injury evokes a complex cascade of pathophysiological events at the blood-vascular-parenchymal interface. These evolve over time and space and result in progressive neurological damage. Emerging evidence suggests that blood-brain barrier (BBB) recovery and reestablishment of BBB impermeability are incomplete and that these could influence stroke injury recovery, increase the risk of new stroke occurrence, and be a solid substrate for developing vascular dementia. Recent work from the author's laboratory has established the existence of incomplete BBB recovery in chronic stroke conditions that was induced by structural alterations to brain endothelial junctional complexes and persistent BBB leakage. The experimental methodology presented here is focused on modelling chronic stroke injury using an in vivo thromboembolic mouse stroke model and how to evaluate the kinetics and magnitude of BBB hyperpermeability in chronic stroke conditions using a combination of magnetic resonance imaging, tracer studies, and immunohistochemistry.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-1-0716-2289-6_17 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!