Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Planktonic ciliates are major components of pelagic food webs in both marine and freshwaters. Their population dynamics are controlled 'bottom-up' by prey availability and 'top-down' by microcrustacean predators. In oceans, copepods are the main ciliate predators while in lakes cladocerans are the typical predators. The efficacy by which these functionally different predators control ciliate population dynamics is debated. We, therefore, investigated experimentally the grazing of three microcrustacean predators with different feeding modes on five freshwater ciliates. We then performed a meta-analysis to assess if our findings can be generalised for aquatic ecosystems. We hypothesized that top-down control is stronger in lakes than in the ocean. We find that: (i) average ingestion rates of marine and freshwater microcrustaceans do not differ; (ii) clearance rates of freshwater cladocerans decrease with ciliate size but increase with ciliate size in freshwater copepods; (iii) clearance rates of the marine microcrustaceans is unrelated to ciliate cell size. These findings have implications for the functioning of freshwater and marine food webs: (i) the ciliate-microcrustacean link is stronger in lakes than in the ocean, and (ii) globally top-down control of ciliates is unlikely in the ocean.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9218117 | PMC |
http://dx.doi.org/10.1038/s41598-022-14301-y | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!