Dielectric magnetochiral anisotropy.

Nat Commun

Univ Angers, CNRS, MOLTECH-Anjou, SFR MATRIX, F-49000, Angers, France.

Published: June 2022

The combination of chirality and magnetism has steadily grown over the last decennia into an area of intense research. Magnetochiral anisotropy, chirality-induced spin-selectivity and helimagnetism are the most prominent phenomena resulting from this combination, touching different systems like topological (semi-)metals and insulators, quantum magnets, type II multiferroics and enantio-selective synthesis. As an extension to this area, we argue, based on symmetry arguments, that magnetochiral anisotropy will manifest itself in the displacement current in chiral dielectrics in a magnetic field. We confirm this conjecture by the experimental observation of very strong dielectric magnetochiral anisotropy near the ferroelectric phase transitions of triglycine sulfate and Rochelle salt, two of the oldest and most investigated chiral ferroelectrics. This effect opens a new playground in the study and characterisation of all chiral dielectrics. With our discovery, magnetochiral anisotropy now covers the (di)electrical properties of all condensed matter, from insulators to superconductors.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9217804PMC
http://dx.doi.org/10.1038/s41467-022-31225-3DOI Listing

Publication Analysis

Top Keywords

magnetochiral anisotropy
20
dielectric magnetochiral
8
chiral dielectrics
8
anisotropy
5
anisotropy combination
4
combination chirality
4
chirality magnetism
4
magnetism steadily
4
steadily grown
4
grown decennia
4

Similar Publications

Coexistence of room temperature magneto-chiral dichroism and magneto-electric coupling in a chiral nanomagnet.

Nanoscale

December 2024

Laboratoire National des Champs Magnétiques Intenses (LNCMI), Univ. Grenoble Alpes, INSA Toulouse, Univ. Toulouse Paul Sabatier, EMFL, CNRS, Grenoble, France.

We report herein on the magneto-chiral dichroism (MChD), investigated through near infrared light absorption, of a chiral nanomagnet showing room temperature magneto-electric coupling. The MChD signal associated with the Yb center is driven by the magnetic dipole allowed character of the F ← F electronic transition (|Δ| = 1). Magnetic field and temperature dependence studies reveal an MChD signal that follows the material magnetization and persists at room temperature.

View Article and Find Full Text PDF

Field-Free Superconducting Diode Effect and Magnetochiral Anisotropy in FeTeSe Junctions with the Inherent Asymmetric Barrier.

ACS Nano

November 2024

Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore.

Article Synopsis
  • Nonreciprocal electrical transport is important for modern electronics and is now being studied in superconductors, specifically through a phenomenon called the superconducting diode effect (SDE), which allows unequal supercurrents in different directions.
  • The SDE often requires broken inversion symmetry and is typically seen with electrical magnetochiral anisotropy (eMCA), but achieving it without a magnetic field is important for the development of superconductor devices.
  • This research demonstrates a new field-free SDE in FeTeSe (FTS) junctions linked to surface gradients and spin splitting, providing a simple and effective method to enhance superconducting electronics.
View Article and Find Full Text PDF

Optical Readout of Single-Molecule Magnets Magnetic Memories with Unpolarized Light.

J Am Chem Soc

August 2024

Laboratoire National des Champs Magnétiques Intenses (LNCMI), CNRS, Univ. Grenoble Alpes, INSA Toulouse, Univ. Toulouse Paul Sabatier, EMFL, 38042 Grenoble, France.

Magnetic materials are widely used for many technologies in energy, health, transportation, computation, and data storage. For the latter, the readout of the magnetic state of a medium is crucial. Optical readout based on the magneto-optical Faraday effect was commercialized but soon abandoned because of the need for a complex circular polarization-sensitive readout.

View Article and Find Full Text PDF

In Josephson diodes the asymmetry between positive and negative current branch of the current-phase relation leads to a polarity-dependent critical current and Josephson inductance. The supercurrent nonreciprocity can be described as a consequence of the anomalous Josephson effect -a φ-shift of the current-phase relation- in multichannel ballistic junctions with strong spin-orbit interaction. In this work, we simultaneously investigate φ-shift and supercurrent diode efficiency on the same Josephson junction by means of a superconducting quantum interferometer.

View Article and Find Full Text PDF

Josephson diode effect in junctions of superconductors with band asymmetric metals.

J Phys Condens Matter

May 2024

School of Physics, University of Hyderabad, Prof. C. R. Rao Road, Gachibowli, Hyderabad 500046, India.

At interfaces connecting two superconductors (SCs) separated by a metallic layer, an electric current is induced when there is a disparity in the phases of the two superconductors. We elucidate this phenomenon based on the weights of the Andreev bound states associated with the states carrying currents in forward and reverse directions. Typically, current phase relation (CPR) in Josephson junctions is an odd function.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!