The combination of chirality and magnetism has steadily grown over the last decennia into an area of intense research. Magnetochiral anisotropy, chirality-induced spin-selectivity and helimagnetism are the most prominent phenomena resulting from this combination, touching different systems like topological (semi-)metals and insulators, quantum magnets, type II multiferroics and enantio-selective synthesis. As an extension to this area, we argue, based on symmetry arguments, that magnetochiral anisotropy will manifest itself in the displacement current in chiral dielectrics in a magnetic field. We confirm this conjecture by the experimental observation of very strong dielectric magnetochiral anisotropy near the ferroelectric phase transitions of triglycine sulfate and Rochelle salt, two of the oldest and most investigated chiral ferroelectrics. This effect opens a new playground in the study and characterisation of all chiral dielectrics. With our discovery, magnetochiral anisotropy now covers the (di)electrical properties of all condensed matter, from insulators to superconductors.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9217804 | PMC |
http://dx.doi.org/10.1038/s41467-022-31225-3 | DOI Listing |
Nanoscale
December 2024
Laboratoire National des Champs Magnétiques Intenses (LNCMI), Univ. Grenoble Alpes, INSA Toulouse, Univ. Toulouse Paul Sabatier, EMFL, CNRS, Grenoble, France.
We report herein on the magneto-chiral dichroism (MChD), investigated through near infrared light absorption, of a chiral nanomagnet showing room temperature magneto-electric coupling. The MChD signal associated with the Yb center is driven by the magnetic dipole allowed character of the F ← F electronic transition (|Δ| = 1). Magnetic field and temperature dependence studies reveal an MChD signal that follows the material magnetization and persists at room temperature.
View Article and Find Full Text PDFACS Nano
November 2024
Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore.
J Am Chem Soc
August 2024
Laboratoire National des Champs Magnétiques Intenses (LNCMI), CNRS, Univ. Grenoble Alpes, INSA Toulouse, Univ. Toulouse Paul Sabatier, EMFL, 38042 Grenoble, France.
Magnetic materials are widely used for many technologies in energy, health, transportation, computation, and data storage. For the latter, the readout of the magnetic state of a medium is crucial. Optical readout based on the magneto-optical Faraday effect was commercialized but soon abandoned because of the need for a complex circular polarization-sensitive readout.
View Article and Find Full Text PDFNat Commun
May 2024
Institut für Experimentelle und Angewandte Physik, University of Regensburg, Regensburg, Germany.
In Josephson diodes the asymmetry between positive and negative current branch of the current-phase relation leads to a polarity-dependent critical current and Josephson inductance. The supercurrent nonreciprocity can be described as a consequence of the anomalous Josephson effect -a φ-shift of the current-phase relation- in multichannel ballistic junctions with strong spin-orbit interaction. In this work, we simultaneously investigate φ-shift and supercurrent diode efficiency on the same Josephson junction by means of a superconducting quantum interferometer.
View Article and Find Full Text PDFJ Phys Condens Matter
May 2024
School of Physics, University of Hyderabad, Prof. C. R. Rao Road, Gachibowli, Hyderabad 500046, India.
At interfaces connecting two superconductors (SCs) separated by a metallic layer, an electric current is induced when there is a disparity in the phases of the two superconductors. We elucidate this phenomenon based on the weights of the Andreev bound states associated with the states carrying currents in forward and reverse directions. Typically, current phase relation (CPR) in Josephson junctions is an odd function.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!