Observation of dynamic processes by transmission electron microscopy (TEM) is an attractive technique to experimentally analyze materials' nanoscale phenomena and understand the microstructure-properties relationships in nanoscale. Even if spatial and temporal resolutions of real-time TEM increase significantly, it is still difficult to say that the researchers quantitatively evaluate the dynamic behavior of defects. Images in TEM video are a two-dimensional projection of three-dimensional space phenomena, thus missing information must be existed that makes image's uniquely accurate interpretation challenging. Therefore, even though they are still a clustering high-dimensional data and can be compressed to two-dimensional, conventional statistical methods for analyzing images may not be powerful enough to track nanoscale behavior by removing various artifacts associated with experiment; and automated and unbiased processing tools for such big-data are becoming mission-critical to discover knowledge about unforeseen behavior. We have developed a method to quantitative image analysis framework to resolve these problems, in which machine learning and particle filter estimation are uniquely combined. The quantitative and automated measurement of the dislocation velocity in an Fe-31Mn-3Al-3Si autunitic steel subjected to the tensile deformation was performed to validate the framework, and an intermittent motion of the dislocations was quantitatively analyzed. The framework is successfully classifying, identifying and tracking nanoscale objects; these are not able to be accurately implemented by the conventional mean-path based analysis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9217921PMC
http://dx.doi.org/10.1038/s41598-022-13878-8DOI Listing

Publication Analysis

Top Keywords

transmission electron
8
electron microscopy
8
filter estimation
8
nanoscale
5
nanoscale defect
4
defect evaluation
4
framework
4
evaluation framework
4
framework combining
4
combining real-time
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!