Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Plasmonic nanostructures have been exploited in photochemical and photocatalytic processes owing to their surface plasmon resonance characteristics. This unique property generates photoinduced potentials and currents capable of driving chemical reactions. However, these processes are hampered by low photon conversion and utilization efficiencies, which are issues that need to be addressed. In this study, we integrate plasmonic photochemistry and simple tunable heterostructure characteristics of a dielectric photonic crystal for the effective control of electromagnetic energy below the diffraction limit of light. The nanostructure comprises high-density Ag nanoparticles on nanocavity arrays of SrTiO and TiO, where two oxides constitute a chemical heterojunction. Such a nanostructure is designed to form intense electric fields and a vectorial electron flow channel of Ag → SrTiO → TiO. When the plasmonic absorption of Ag nanoparticles matched the photonic stopband, we observed an apparent quantum yield of 3.1 × 10 e per absorbed photon. The contributions of light confinement and charge separation to the enhanced photocurrent were evaluated.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/5.0092654 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!