Background: Small cell vaginal carcinoma is a very rare gynecological cancer and treatments including chemo- and radiotherapy have had limited success.

Case Report: We report the case of a 37-year-old female, where intensive treatment with the combination of paclitaxel, carboplatin, irinotecan, and camptothecin with and without irradiation did not avoid metastasis of the tumor and the death of the patient. In an attempt to develop a strategy for individualized tumor therapy, we performed immunohistochemistry of 19 cancer-related proteins using a biopsy sample. Strong expression was observed for glutathione S-transferase P1 (GSTP1), epidermal growth factor receptor (EGFR), inducible nitric oxide synthetase (iNOS), nuclear factor kappa B (NF-κB), the oncogene c-MYC, vascular endothelial growth factor (VEGF), and the proliferation marker Ki-67. Intermediate expression was found for the oncogene SRC, β-catenin, and the viral E7 protein. We then performed virtual drug screening with PyRx and molecular docking with AutoDock 4.2.6 by using the three-dimensional structures of these proteins and a chemical library of 1,577 FDA-approved drugs, in a drug repurposing approach. The top 15 compounds were either approved anticancer drugs or drugs used to treat non-malignant diseases. These compounds were bound with comparable or even higher affinity to the targets compared to control inhibitors. Several of these compounds were bound with high affinity to more than one of these target proteins, further supporting the drug repurposing concept.

Conclusion: These drugs might offer additional opportunities to reach treatment responses. This approach of individualized tumor therapy might be theoretically not only applicable for small cell vaginal carcinoma but for other tumor entities as well.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9247883PMC
http://dx.doi.org/10.21873/cgp.20337DOI Listing

Publication Analysis

Top Keywords

small cell
12
cell vaginal
12
vaginal carcinoma
12
virtual drug
8
drug screening
8
approach individualized
8
individualized tumor
8
tumor therapy
8
growth factor
8
drug repurposing
8

Similar Publications

Impacts of lateral conductive heat flow on ground temperature and implications for permafrost modeling.

Sci Rep

December 2024

Canada Centre for Remote Sensing, Canada Centre for Mapping and Earth Observation, Natural Resources Canada, 580 Booth Street, Ottawa, ON, K1A 0E4, Canada.

Permafrost ground temperature and its spatial distribution are usually calculated using one-dimensional models based on heat flow in the vertical direction. Here, we theoretically calculated the impacts of lateral conductive heat flow on ground temperature under equilibrium and transient conditions. The results show that lateral heat flow has strong impacts on ground temperature, especially in deep ground.

View Article and Find Full Text PDF

Fibrolamellar Hepatocellular Carcinoma (FLC) is a rare liver cancer characterized by a fusion oncokinase of the genes DNAJB1 and PRKACA, the catalytic subunit of protein kinase A (PKA). A few FLC-like tumors have been reported showing other alterations involving PKA. To better understand FLC pathogenesis and the relationships among FLC, FLC-like, and other liver tumors, we performed a massive multi-omics analysis.

View Article and Find Full Text PDF

Micropapillary adenocarcinoma (MPC) is an aggressive histological subtype of lung adenocarcinoma (LUAD). MPC is composed of small clusters of cancer cells exhibiting inverted polarity. However, the mechanism underlying its formation is poorly understood.

View Article and Find Full Text PDF

Conjugative plasmids promote the dissemination and evolution of antimicrobial resistance in bacterial pathogens. However, plasmid acquisition can produce physiological alterations in the bacterial host, leading to potential fitness costs that determine the clinical success of bacteria-plasmid associations. In this study, we use a transcriptomic approach to characterize the interactions between a globally disseminated carbapenem resistance plasmid, pOXA-48, and a diverse collection of multidrug resistant (MDR) enterobacteria.

View Article and Find Full Text PDF

Quantifying the regulatory potential of genetic variants via a hybrid sequence-oriented model with SVEN.

Nat Commun

December 2024

State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Biomedical Pioneering Innovative Center (BIOPIC) and Beijing Advanced Innovation Center for Genomics (ICG), Center for Bioinformatics (CBI), Peking University, 100871, Beijing, China.

Deciphering how noncoding DNA determines gene expression is critical for decoding the functional genome. Understanding the transcription effects of noncoding genetic variants are still major unsolved problems, which is critical for downstream applications in human genetics and precision medicine. Here, we integrate regulatory-specific neural networks and tissue-specific gradient-boosting trees to build SVEN: a hybrid sequence-oriented architecture that can accurately predict tissue-specific gene expression level and quantify the tissue-specific transcriptomic impacts of structural variants across more than 350 tissues and cell lines.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!