Fat body-derived Spz5 remotely facilitates tumor-suppressive cell competition through Toll-6-α-Spectrin axis-mediated Hippo activation.

Cell Rep

Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, China; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou 310024, China. Electronic address:

Published: June 2022

Tumor-suppressive cell competition is an evolutionarily conserved process that selectively removes precancerous cells to maintain tissue homeostasis. Using the polarity-deficiency-induced cell competition model in Drosophila, we identify Toll-6, a Toll-like receptor family member, as a driver of tension-mediated cell competition through α-Spectrin (α-Spec)-Yorkie (Yki) cascade. Toll-6 aggregates along the boundary between wild-type and polarity-deficient clones, where Toll-6 physically interacts with the cytoskeleton network protein α-Spec to increase mechanical tension, resulting in actomyosin-dependent Hippo pathway activation and the elimination of scrib mutant cells. Furthermore, we show that Spz5 secreted from fat body, the key innate organ in fly, facilitates the elimination of scrib clones by binding to Toll-6. These findings uncover mechanisms by which fat bodies remotely regulate tumor-suppressive cell competition of polarity-deficient tumors through inter-organ crosstalk and identified the Toll-6-α-Spec axis as an essential guardian that prevents tumorigenesis via tension-mediated cell elimination.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.celrep.2022.110980DOI Listing

Publication Analysis

Top Keywords

cell competition
20
tumor-suppressive cell
12
tension-mediated cell
8
elimination scrib
8
cell
6
competition
5
fat body-derived
4
body-derived spz5
4
spz5 remotely
4
remotely facilitates
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!