Towards scalable plasmonic Fano-resonant metasurfaces for colorimetric sensing.

Nanotechnology

US Army Research Laboratory, 4600 Deer Creek Loop, Aberdeen Proving Ground, MD 21005, United States of America.

Published: July 2022

Transitioning plasmonic metasurfaces into practical, low-cost applications requires meta-atom designs that focus on ease of manufacturability and a robustness with respect to structural imperfections and nonideal substrates. It also requires the use of inexpensive, earth-abundant metals such as Al for plasmonic properties. In this study, we focus on combining two aspects of plasmonic metasurfaces-visible coloration and Fano resonances-in a morphology amenable to scalable manufacturing. The resulting plasmonic metasurface is a candidate for reflective colorimetric sensing. We examine the potential of this metasurface for reflective strain sensing, where the periodicity of the meta-atoms could ultimately be modified by a potential flexion, and for localized surface plasmon resonance refractive index sensing. This study evaluates the potential of streamlined meta-atom design combined with low-cost metallization for inexpensive sensor readout based on human optical perception.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1361-6528/ac7b33DOI Listing

Publication Analysis

Top Keywords

colorimetric sensing
8
scalable plasmonic
4
plasmonic fano-resonant
4
fano-resonant metasurfaces
4
metasurfaces colorimetric
4
sensing
4
sensing transitioning
4
plasmonic
4
transitioning plasmonic
4
plasmonic metasurfaces
4

Similar Publications

CQHC, a novel colorimetric fluorescent sensor, developed for the selective sensing of ions and well characterised, including SC-XRD. It demonstrated selective sensing for Co, Zn, Hg and F using absorbance titration at 420 nm, 446 nm and the binding constants estimated follows the order F > Co > Hg > Zn. On light of this, molecular logic gate was built for CQHC's selective multi-ion detection.

View Article and Find Full Text PDF

Dual-mode luminescence and colorimetric sensing for Al and Fe/Fe ions in water using a zinc coordination polymer.

Spectrochim Acta A Mol Biomol Spectrosc

January 2025

Materials Chemistry Research Center, Department of Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002 Thailand. Electronic address:

A zinc(II) coordination polymer, [Zn(Hdhtp)(2,2'-bpy)(HO)] (1), has been utilized as a dual-mode luminescence-colorimetric sensor (Hdhtp = 2,5-dihydroxy terephthalate and 2,2'-bpy = 2,2'-bipyridine). The presence of hydroxyl groups in Hdhtp can promote excited-state intra- and intermolecular proton transfer (ESIPT) phenomena. Therefore, compound 1, which displays high stability in aqueous environments, exhibits a strong green-yellow photoluminescence.

View Article and Find Full Text PDF

An innovative colorimetric sensing strategy was developed for the detection of glucose by the integration of glucose aptamer, glucose oxidase (GOx), and horseradish peroxidase (HRP), termed aptamer proximal enzyme cascade reactions (APECR). In the presence of glucose, aptamer binding enables GOx to catalyze glucose oxidation into HO efficiently. Subsequently, the adjacent HRP catalyzes the oxidation of the peroxidase substrate, 2,2'-biazobis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), utilizing the generated HO, resulting in a distinct color change.

View Article and Find Full Text PDF

The outbreak of the monkeypox epidemic underscores the importance of developing a rapid and sensitive virus detection technique. Microneedles (MNs) offer minimally invasive sampling capabilities, providing a solution for the development of integrated extraction and diagnostic portable devices. Here, we report an integrated MNs and hydrogel biosensor (IMHB) platform, composed of an electronic device, an MN patch, and a hydrogel patch.

View Article and Find Full Text PDF

Frontiers in laccase nanozymes-enabled colorimetric sensing: A review.

Anal Chim Acta

February 2025

Nanobiophotonics Department, Leibniz Institute of Photonic Technology (Leibniz-IPHT), Albert-Einstein-Strasse 9, 07745, Jena, Germany. Electronic address:

In recent years, nanozyme-based analytics have become popular. Among these, laccase nanozyme-based colorimetric sensors have emerged as simple and rapid colorimetric detection methods for various analytes, effectively addressing natural enzymes' stability and high-cost limitations. Laccase nanozymes are nanomaterials that exhibit inherent laccase enzyme-like activity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!